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Abstract

Yang, Nathan T. (M.S., Environmental Engineering)
Evaluation of Adsorptive and Biological DBP Removal in Activated Carbon Filters

Thesis directed by R. Scott Summers, Professor, Department of Civil, Environmental,
and Architectural Engineering, University of Colorado at Boulder

Small drinking water systems face unique compliance challenges with regards to
many water quality parameters, including disinfection-by-product (DBP) levels in the
distribution system. Filtration with granular activated carbon (GAC) can be an effective
technology for the removal of total organic carbon (TOC) and DBPs.

The objectives of this thesis were to develop and evaluate the use of GAC in the
distribution system to meet DBP regulations under both adsorptive and biological modes.
It was hypothesized that a post-treatment reactor strategically located in the distribution
system will offer small systems a cost-effective alternative to controlling total
trihalomethanes (TTHMs), sum of five haloacetic acids (HAASs) and other unregulated
DBPs. A total of six adsorptive rapid small scale column tests (RSSCTs) and three pilot
scale biofilters were operated to investigate the effects of GAC type, source water
quality, temperature and empty bed contact time (EBCT) on the adsorption and
biodegradation of TOC and DBPs in treated drinking water.

Experimental results show that adsorption with bituminous GAC is an effective
treatment strategy for the removal of TOC and TTHMs through at least 6,000 bed
volumes (42 days at 10min EBCT) and often longer depending on influent conditions.
Pore surface diffusion model (PSDM) analysis indicated that the presence of both natural
organic matter (NOM) and co-solutes are important to consider when analyzing THM

breakthrough, with THM adsorbability being the most important factor in determining
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v
breakthrough order (TCM - DCBM - DBCM - TBM) and influent concentration
determining localized breakthrough. Experimental HAA adsorption results were
nonsystematic.

In biofiltration pilot runs, DCAA and TCAA made up >85% of HAAS.
Experimental DCAA removal between 83%-97% was reported at all EBCTS (5, 10 and
20min) for the duration of the pilot runs. TCAA removal ranged between 50%-78% at 5
minute EBCT, 80%-96% at 10 minute EBCT and 93%-98% at 20 minute EBCT. No
THM biodegradation was observed. HAA reduction and reformation results indicated
that biofiltration is an effective treatment for the reduction in HAAS both immediately
after biofiltration as well as at the end of the distribution system, across many ranges of

chlorinated influent bromide and TOC conditions.
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Chapter 1
Introduction

1.1 Motivation

As communities grow and the drinking water networks get bigger, the
amount of time that water spends in the distribution network before it reaches customers
can increase, creating challenges to maintaining water quality. The most prevalent
chlorinated disinfection-by-products (DBPs) in drinking water are the four species of
trihalomethanes (chloroform (TCM), dichlorobromomethane (DCBM),
dibromochloromethane (DBCM), and bromoform (TBM)) and nine species of haloacetic
acids (HAAs). Total trihalomethanes (TTHM), the sum of all four trihalomethanes
(THMs), as well as the sum of five haloacetic acids (HAAS), i.e., monochloroacetic acid
(MCAA), monobromoacetic acid (MBAA), dichloroacetic acid (DCAA), dibromoacetic
acid (DBAA), and trichloroacetic acid (TCAA), are regulated in the United States
(USEPA, 2015). Promulgated January 5, 2006, the stage 2 disinfectants and disinfection
by products rule (DBPR) strengthened regulation of TTHM and HAAS from the previous
stage 1 DBPR. Compliance monitoring for TTHM and HAAS5 was changed from a
distribution system running average to a locational running average, meaning that the
maximum contaminant levels (MCLs) shown in Table 1-1 will be calculated for each
monitoring location in the distribution system as opposed to an average of all distribution

system monitoring points.
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Table 1-1: Stage 2 DBPR MCLs and MCLGs

Regulated Contaminants MCL MCLG
mg/L mg/L

TTHM 0.080 -
Chloroform - 0.07
Bromodichloromethane - zero
Dibromochloromethane - 0.060
Bromoform - zero

HAAS 0.060 -
Monochloroacetic acid - 0.070
Dichloroacetic acid - zero
Trichloroacetic acid - 0.020

Bromoacetic acid - -
Dibromoacetic acid - -

The rule targets systems with the greatest risk and builds incrementally on
existing rules, aiming to decrease DBP exposure and related potential health risks and
provide more equitable public health protection (USEPA, 2015).

Three general strategies have been adopted to deal with DBP violations: (1)
switch from chlorination to an alternative disinfectant or disinfection regime, (2) reduce
DBP precursors in the raw water by enhanced treatment plant processes, and/or (3)
remove DBPs after they have formed. Although post-treatment or remote DBP control
has not received as much attention as the other two control strategies, i.e., switching
from chlorination and reducing organic precursors before the disinfection process,
remote DBP control has the potential to be a cost-effective treatment option and
compliance strategy (especially for small systems) compared to in-plant treatment
where all the water must be treated. Such cost effective compliance may prevent the

proliferation of chloramination, which does not meet the intent of the DBP rule by
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forming unregulated DBPs (e.g., nitrosamines) some of which may be of more health
concern than the currently regulated THMs and HAASs.
The overall goal of this project is to evaluate and model the use of granular

activated carbon for the control of preformed DBPs and DBP precursors.

1.2 Research Objectives

Use of granular activated carbon (GAC) in the distribution system would remove
both regulated classes of disinfection byproducts (DBPs) at the point of treatment, and
may lower DBP re-formation by removing DBP precursors, measured as total organic
carbon (TOC) without requiring significant investment in existing treatment or
disinfection facilities. While the adsorption capacity of GAC to remove regulated DBPs
is relatively low (McGuire et al, 1991; Tung et al., 2006), adsorption of DBPs may still
be economical in remote systems because only a small portion of the total system flow
must be treated. Alternatively, GAC can be used in a biological treatment mode to
degrade haloacetic acids (HAA’s) in steady state (Xie & Zhou, 2002). While this
approach will likely only reduce the regulated HAA’s, the treatment system will be able
to operate for long periods of time with very little maintenance. Remote GAC
adsorption/biodegradation would take place in an above ground pressure vessel, with a

schematic of the proposed treatment system shown in Figure 1-1.

BW ‘% + Extents of
WTP—AN\—t GAC > A\—> distribution
T T system
Cl,
BW
waste

Figure 1-1: Remote GAC treatment schematic
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The project objective is to develop and evaluate the use of GAC in the distribution
system to meet DBPs regulations under both adsorptive and biological modes. It is
hypothesized that a post-treatment reactor strategically located in the distribution system
will offer small systems a cost-effective alternative to controlling THMs, HAASs and
other unregulated DBPs. To verify our hypothesis, the following two primary research
questions will be answered:

1. How long can the GAC remove THMs and HA As by adsorption under different
conditions?
2. What levels of HAA removal can be expected in a remote, engineered biological

treatment system under different conditions?

1.3 Thesis Organization

This thesis is divided into four chapters. Chapter 1 provides an introduction to the
material contained within. Chapter 2 is a literature review of the treatment methods
studied, providing a lens through which to view this work. Chapter 3 outlines the
materials and methods used throughout this research. Chapter 4 showcases experimental
results and discussion, with a summary of those results viewed in light of the research
objectives. Finally, appendices A - F are included which contain raw data, tables and

figures not shown in the body of the thesis.
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Chapter 2
Background

2.1. Disinfection By Product Formation and Control

Chlorination is the most common disinfection method for drinking water.
Although chlorination is unquestionably important to the supply of safe drinking water,
chlorinated DBPs can be created through unintended reactions of chlorine with natural
organic matter (NOM), as well as bromide, (Eqn. 2-1). NOM is the principal precursor of
chlorinated DBPs in most water, and represents a significant portion of all organic matter

in most source waters (Singer, 1994).

HOCl + Br— + NOM -2 THMs ,6HAAs ,and other DBPs Equation 2 — 1

Toxicology studies have shown THMs, HAAs and other DBPs to be carcinogenic
or to cause adverse reproductive or developmental effects in laboratory animals, and a
large number of epidemiological studies have shown an association between the
consumption of chlorinated drinking water, or exposure to it, and bladder, colon and
rectal cancer in humans (Babi et al., 2007).

The best available technologies (BATs) recommended by the US Environmental
Protection Agency (USEPA) for the control of DBPs include (Wu, 2012):

* Enhanced Coagulation for precursor removal
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*  GAC 10 — Granular activated carbon filter beds with an empty-bed contact time
of 10 minutes based on average daily flow and a carbon reactivation frequency of
every 120 days

* Nanofiltration (NF) — Membrane molecular weight cutoff of 1000 Daltons or less

* Chloramination — for consecutive systems
One of the most effective and economical methods to control DBPs in

conventional WTPs is to remove precursors (organic material) before they react with
disinfectants. Much research on DBPs removal has been focused on NOM removal while
only a few results have been recently reported on the removal of DBPs after formation in

controlled experiments (Xie & Zhou, 2002; Tung et al., 2006).

2.2. Adsorption by Granular Activated Carbon

Adsorption by GAC is a well-studied treatment technique for the removal of
NOM, taste and odor compounds, and synthetic organic chemicals (SOCs) in drinking
water treatment (Crittenden et al., 2012; Sontheimer et al., 1988). In the adsorption
process, the adsorbent is defined as the solid media on which adsorption occurs (i.e.
GAC), and the adsorbate is the compound (or contaminant) that undergoes adsorption
onto the adsorbent (Crittenden et al., 2012). Activated carbon is a highly porous material,
providing a large surface area to which contaminants may effectively adsorb (Sontheimer
et al., 1988). Adsorption is a mass transfer operation in which adsorbate present in
aqueous solution is transported into the porous adsorbent grain by means of diffusion,
then adsorbed or accumulated on the inner surface of the adsorbent and thus removed

from the liquid (Crittenden et al., 2012; Sontheimer et al., 1988). Physical adsorption and
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chemisorption (Table 2-1) are both adsorption phenomenon known to occur, with the key

differences summarized in Table 2-1 (Crittenden et al., 2012; Sontheimer et al., 1988)

Table 2-1: Comparison of Physical and Chemical Adsorption (adapted from Crittenden
etal, 2012)

Parameter Physical Adsorption Chemisorption
Use for water Most common type of adsorption .
. Rare in water treatment
treatment mechanism
Process speed Limited by mass transfer Variable

Nonspecific binding mechanisms such as
Type of bonding van der Waals forces, vapor
condensation

Specific exchange of electrons,
chemical bond at surface

Typically nonreversible,

Type of reaction Reversible, exothermic .
exothermic

Heat of

. 4-40 kJ/mol >200 kJ/mol
adsorption

While physical adsorption and chemisorption can be distinguished easily at their
extremes, some cases fall between the two, as a highly unequal sharing of electrons may
not be distinguishable from the high degree of distortion of an electron cloud that occurs
with physical adsorption (Sontheimer et al., 1988).

GAC treatment occurs in a specific unit operation referred to as a contactor
system or filter, with the active adsorption zone (top half of Figure 2-1) traveling
downward through the bed as treatment progresses, producing the effluent profile
concentration pictured in the bottom half of Figure 2-1 (DiGiano, 1983). Contactor unit
design variables include flow-rate and volume. Empty bed contact time (EBCT) is equal
to the volume of the contactor normalized by the flow rate, or the bed length normalized
by the velocity and in tandem with design flow rate, determines the amount of carbon

required in a contactor. Reducing the flow rate through the filter or increasing the
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contactor volume (and corresponding mass of carbon) can increase EBCT, with longer
EBCTs delaying breakthrough and producing longer filter run times (DiGiano, 1983).
Typical EBCTs for water treatment applications range between 5 to 25 minutes.
Normalization of breakthrough data on a bed volume basis allows comparison of filters

performing at different EBCTs.
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. : “ EXHAUSTION
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i | :
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S 5 E 2o

0 l MTZ '

Figure 2-1: GAC Contactor Schematic: Idealized Adsorption Zone and Resulting
Breakthrough (Noto, 2016)

Removal effectiveness, and resulting breakthrough profile of a specific
contaminant, is constrained by physical and chemical factors related to the properties of
both the adsorbent and contaminant. Organic materials with high carbon contents such as
wood, lignite and coal are used to manufacture GAC, with GAC properties varying with
feedstock. A widely used metric for characterizing GAC is the iodine number, which
gives a good indication of the microporosity of the GAC sample (Sontheimer et al. 1988).
Iodine numbers for the GAC utilized in this study are presented in Chapter 3, Material
and Methods. Adsorbability and a literature review of TOC, THMs and HA As removal is

discussed in the following sections of this chapter.
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2.2.1. TOC Adsorption

Roberts and Summers (1982), Babi et al., (2007), Johnson et al., (2009) and

Summers et al. (2010) studied TOC adsorption in GAC filters. They report 10 to 20 %

immediate breakthrough or nonadsorbable fraction of the TOC followed by a

breakthrough of different adsorbable fractions to a steady-state condition dominated by

biological removal.
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Figure 2-2: Representative DOC breakthrough for activated carbon columns
(Summers et al., 2010)

Roberts and Summers (1982) reported that in most cases a nearly constant

concentration between 50 and 90 percent (mean of 80%) of the influent DOC appears in

the effluent after exhaustion of the GAC. Displacement of poorly adsorbable organics by

more strongly adsorbing compounds, biodegradation, and slow diffusion of humic
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substances into the microporous carbon are cited as contributing factors to this behavior

(Roberts & Summers, 1982).

2.2.2. THM Adsorption

The literature indicates that adsorption capacity of GAC for trihalomethanes
varies widely depending on source water quality and application type. The Freundlich
equation (Eqn. 2-2) is often used to model the equilibrium adsorption capacity of
activated carbon. In equation 2-2, q is the solid phase adsorption capacity, C is the liquid

phase concentration and the Freundlich constants are K and n.

1
q= K=xCn Equation 2 — 2

Table 2-2 lists the THM compound properties that affect adsorption affinity and
GAC capacity, including molar mass, octanol-water partition coefficient, solid phase
adsorption capacity at a liquid phase concentration of 10 pug/L, qi0, and Freundlich

modeling parameters for adsorption on bituminous carbon.

Table 2-2: Trihalomethane Adsorption Affinity Indicators for Bituminous based GAC
(Speth & Miltner, 1990; World Health Organization, 2004)

Compound Molar Mass  log Kow K 1/n d1o
g/mol (mg/g)*(L/mg)*(1/n) mg/g
TCM 119.37 1.97 9.4 0.67 0.43
DCBM 163.8 1.88 22.2 0.66 1.09
DBCM 208.28 2.08 47.3 0.64 2.53
TBM 252.73 2.38 91.8 0.67 4.30

THM compound properties that affect adsorption affinity include molar mass and

solubility, measured by the octanol-water partition coefficient. The octanol-water
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partition coefficient (K,w) 1s the ratio of a chemical's concentration in octanol to its
concentration in the aqueous phase of a two-phase system at equilibrium. Increasing K
values indicate increasing hydrophobicity, and correspondingly, increasing affinity for
adsorption (McCarty et al., 1987). The adsorbability of the TTHM species is TCM >
DCBM - DBCM - TBM. This order of breakthrough has also been shown in columns
(Fokken & Kurtz, 1984). In adsorption isotherm results, chlorinated THM species gave
lower adsorption capacites (K) for GAC than their brominated analogues did (Speth &
Miltner, 1990).

When applied in a GAC column, the capacity for TCM (typically the THM
species with the highest concentration) is exhausted in a matter of weeks to months
(Table 2-3), while GAC may last months to years for TBM. Factors that impact the
effectiveness of GAC for treatment of THMs include adsorber EBCT, influent speciation
of THMs, carbon type utilized, competition for adsorption sites by NOM and other
contaminants, preloading of organics onto the carbon, temperature, pH, and adsorption
kinetics ,affected by carbon size and hydraulic loading rate (Speth & Miltner, 1990;
Johnson, et al., 2009).

The volume of water treated can be normalized to the volume of GAC in the
column and expressed as throughput in bed volumes (BV). The BV treated when C/C,
reaches 0.1 and 0.5 are referred to herein as “BV ¢ and “BVsy” respectively, and are
used in comparing removal performance of a compound under different conditions. ‘“Peak
C/Cy” refers to the maximum chromatographic effect (normalized concentration greater

than one) reported in that study.
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Table 2-3a: THM Breakthrough Literature Review

12

Reference Properties Influent Water Characteristics Study Specifics Breakthrough Profile
Loading Peak
Title Compound | Cl, TOC, THM C, EBCT(s) Rate Scale GAC BV, BVsy, C/C
mg/L mg/L ug/L min m/h BV x 10°
Filtrasorb F-
12,
Babi et al Ar‘;g /LO avg: 60, 48m/h 400,
(2007) v TTHM 0.50 range- ’1> range (20- 14 min  (range 4— Pilot Chemviron 5 16 4
ge: 170) 6 m/h); Carbon, 12x40
5mg/L
mesh
. 0.69 + Calgon F 820 -
+ -
Kim & Kang, 0.49 27(% 161+54 | 9.8min 458 Full Bituminous - 14 -
(2008) 0.6) Scale
mg/L Coal
avg 73,
TTHM range (60 - 10 17 0.8
95)
Johnson et TCM 27 4 Cal.gon F 600 - 6 11 1.6
1.06 2.5 10 - Pilot Bituminous
al., (2009) DCBM 23.5 13 20 -
Coal
DBCM 19 21 NgT -
TBM 3.5 NBT NBT -
Corwin &
Summers,  TCM - 27 70 7 - RSSCT C;:tgf:ﬂi%cl' 25 30 -
(2010)
TCM 0.64 7.5 15 1.7
Fokken & DCBM 1.6 12.5 21 1.1
Kurtz, - 1.1 8 10 - Row 0.8S
(1984) DBCM 2.8 15 25 1.25
TBM 2.9 22 35 1
Sontheimer
etal., THM - 3 6.4 15 - - F 300 3 5.5 1.5
(1988)
Meii TCM 30 2 7 -
eijers, .
AP.etal,  DCBM 0.8 24 25 12 g:‘a':e No”;uR"r‘;" 08 1 3 11 -
(1984)* P
DBCM 12 5 15 -
Meijers, TTHM ave: 70, 15 12 Full- Norit Row 0.8 2 3.5 11
A.P,etal., - 4.5 range(30- Scale Suora
(1984)* TTHM 130) 30 12 p 3 11 -

*Indicates symposium papers compiled in NATO Committee on the Challenges of Modern Society, 1984
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Table 2-3b: THM Breakthrough Literature Review
16.3 2.2 Pilot 3.1 4.5 2
Avg: 5,
range (3-
33.5)
13.6 2.7 Full- 31 47 11
Scale
21.4 2.2. Pilot 2.3 3.7 4
DeMarco & 175 2.7 Full- 29 45 2
Brodtmann., TCM 4 Scale WVG 12
(1984)*
10.9 3 5 4
Avg: 7,
range (3-47
ge ) 21.8 - - -
5.34 Pilot
32.7 3.3 5 1.1
43.6 NBT  NBT -
Nuchar WVG,
Westvaco 32 >8 2
Hydrodarco
Wood, . & e 673, L, e |32 s 13
DeMarco, J., TCM 6.4 range (45- 6.2 7.33 Scale Filt :
1984)* 131 i ftrasor
(1984) ) F400, Calgon 38 65 1.6
Witcarb
Grade W950, 6.5 9.2 -
Witco
4.5 Bituminous 4.2 9.5 -
) Avg: 40, 12x40
xg';rif' TTHM 2 range (10- | ' 6.1 pilot 48 133 -
75) Bituminous
7.5 20x50 4.8 16.3 -

*Indicates symposium papers compiled in NATO Committee on the Challenges of Modern Society, 1984
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Desorption due to competitive adsorption and concentration gradient reversal has
been shown to cause chromatographic peaking in many studies (Babi et al., 2007;
Johnson et al., 2009; Sontheimer et al., 1988).

Sontheimer et al. (1988) reported a reduction in micropollutant adsorption
capacity in columns preloaded with NOM, but difficulty predicting the fouling effect of
NOM in columns due to most natural waters having different concentrations and types of
humic substances. On-site pilot plant studies give the best results for evaluating the
impact of NOM on adsorption due to the variability source water quality and level of
pretreatment (Babi et al., 2007). The impact of TOC on GAC adsorption capacity of
TTHM from available literature values is displayed in Figure 2-3. Variability in this data
is due to the different carbon types, levels of pretreatment, and scales of the various
studies in Table 2-3. Higher influent TOC significantly shortens filter run time (bed

volumes) to 50% breakthrough.
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Figure 2-3: TTHM BV'sy as a function of influent TOC concentration for GAC
columns with the influent TTHM concentration greater than 10 ug/L

GAC type has significant impacts on adsorption of THMs. Coconutd based GACs
have the highest iodine numbers, which correspond to a higher capacity to adsorb small
molecules, such as volatile organic chemicals (Sontheimer et al., 1988).

The literature is unclear with regards to the effect of EBCT on adsorption of
THMs in GAC. Generalizing to micropollutants in the microgram/L range, optimal
carbon utilization (specific throughput) has been shown at shorter EBCTs (10 min) due to
fouling of the carbon by NOM for longer EBCTs (Sontheimer et al. 1988). Smaller
EBCTs give shorter running times until micropollutant breakthrough and hence, less time
for carbon fouling to occur (Sontheimer et al. 1988). Better THM removal on a bed

volume basis is then expected for shorter EBCTs.
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Significant gaps in the literature exist with regards to speciated data for THM
removal under varying influent conditions and EBCTs. This research aims to fill those
gaps by producing speciated breakthrough data for a variety of influent TOC, Br and Cl,

conditions.

2.2.3. HAA Adsorption

Studies by Tung et al. (2006) and Xie and Zhou (2002) have indicated that that
the GAC adsorption capacities for some HAAs were much lower than for those for
THMs, with TCAA being the exception. Adsorption studies conducted by Liu and
Andrews (2001) and Speth and Miltner (1998) indicated that HAA species having a
higher halogen number gave a larger adsorption capacity (K) for GAC (Tung et al.,
2006). In adsorption isotherm results, chlorinated HAA species had lower adsorption
capacities (K) for GAC compared to their brominated analogues (Speth & Miltner, 1990).
Full scale and laboratory GAC filter studies have shown high levels (>90%) of HAA
adsorption to occur for as short as eight days to as long as three months before 50%

breakthrough of HAAS (Liu et al., 2001; Xie & Zhou, 2002; Kim & Kang, 2008).

2.3.Biological Activity in GAC Filters
Biomass has been shown to develop in filters both with and without disinfectant
free chlorine residual (Xie & Zhou, 2002; Wu & Xie, 2005; Chuang et al., 2011; Zearley
& Summers, 2012;). As water percolates through the filter bed natural occurring
heterotrophic bacteria attached to the filter medium (e.g. GAC) oxidize organic matter for

energy supply and carbon source.
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In most drinking water biofilters, the primary substrate sustaining the microbial
biomass is the biodegradable fraction of the dissolved organic matter (DOM) measured as
TOC. Primary substrate must occur at concentrations above a threshold concentration
(Smin) needed to support primary cellular processes without another substrate present
(Zearley & Summers, 2012). Micropollutants such as THMs and HA As are classified as
secondary substrates, present below concentration Sp,in, and are removed by secondary
substrate utilization or cometabolism (Zearley & Summers, 2012). The research of
Zearley and Summers (2012) showed a range of trace organic contaminants to follow a
pseudo-first order rate model, with removal efficiency independent of influent
concentration. The contaminant utlitization rate constant and biomass can be represented

by a pseudo-first order rate constant, k’.

2.3.1 TOC Biodegradation

Primary substrate utilization has been represented by TOC removal across
biofilters since biodegradation is the only significant removal mechanism of DOM with
non-adsorptive media (Zearley & Summers, 2012). Exhausted GAC is assumed to be
non-adsorptive, with steady state removal of TOC in the range of 2 -20% reported in
studies by Babi et al., (2007), Kim and Kang (2008), Johnson et al., (2009) and Zearley

and Summers (2012).

2.3.2 THM Biodegradation
Aerobic biodegradation of THMs in GAC columns is not thermodynamically

favorable due to their high oxidation states (Kim & Kang, 2008; Babi et al., 2007).
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2.3.3 HAA Biodegradation

High levels of HAA biodegradation has been reported in GAC biofilter studies,
with typical removals for established steady state systems exceeding 90% for HAAS
(Kim & Kang, 2008; Tung et al., 2006; Johnson et al., 2009; Wu & Xie, 2005). A

summary of the results of past GAC column studies is presented in Table 2-4.
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Table 2-4: HAA Biodegradation Literature Review

Reference Properties Influent Water Characteristics Study Specifics Removal and Acclimation
Loading Steady-State Time to
Title Compound cl, TOC, HAA C, Scale Rate EBCT(s) Temp Removal Steady State
mg/L  mg/L ug/L m/h min °c %
Babi et Unable to discern
al., HAAs 0.50 2 Pilot 4.8 m/h 14 15 >90 due to
(2007) adsorption
Kim& 5 34
Kang, HAA; 0.69 2.7 205 (+98) Full-Scale 4.58 9.8 6 months
(2008)* 23 99
Tung et CIAA 2.0 100 30 days
al., - - Full-Scale 3.42 10 -
(2006) ClL,AA 25.0 95 50 days
Johnson
etal., HAA 1 2.5 25 Pilot-Scale - 10 12-18 100 7 months
(2009)
CIAA 50 100 35 days
BrAA 50 100 50 days
ClL,AA 50 100 70 days
Zhou & Bench
Xie, Br,AA 1-2 - 50 ench- - 20 20-22 100 70 days
(2002) Scale
Unable to discern
Cl:AA 50 100 due to
adsorption
HAAs 250 100 70 days
4 28
10 58
5.5 5
20 95
30 100
4 52 )
Media collected
10 85 from GAC filters
2.8 10 20 o8 that had been
online for 2.5-3
Wu & Bench- 30 100 years
Xie, HAAG 12 - 300 Scale
(2005)** 4 70
10 95
1.9 15
20 100
30 100
4 90
10 98
1.4 20
20 100
30 100

*Speciated DCAA and TCAA data available in report
**Full speciated EBCT, Temperature and rate constant data for CIAA, Cl,AA, BrAA, BrCIAA, Br,AA and Cl;AA available in report
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The biodegradability of the HAA species in a drinking water biofilm is MBAA >
MCAA > BCAA > DCAA > DBAA > TCAA (Bayless & Andrews, 2008). Di-
halogenated species were removed to a lesser extent than the mono-halogenated
compounds, with the results of Zhou and Xie (2002), Baribeau et al. (2005), Kim and
Kang (2008), and Chuang et al. (2011) showing that DCAA is more biodegradable than
TCAA. Wu and Xie (2005) and Kim and Kang (2008) have reported significant effects of
temperature and EBCT on HAA biodegradation, with higher temperatures and EBCTs
corresponding with higher levels of removal due to biodegradation. The HAAS biofilter
results from six studies are shown in Figure 2-4 and illustrate the impact of EBCT and

temperature.

100 .__/_'7 —o— ®
80 T
y =29.686In(x) + 12.636
r R?2=0.96125
e\: 60 T+ ® T>15C
©
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o
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EBCT (min)

Figure 2-4: Effect of Temperature and EBCT on HAAS5 Biodegradation (data from six
references in Table 2-4)
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Kim and Kang (2008) reported a decrease from 99% HAAS removal in summer
months to 34% HAAS removal in winter months. The kinetic analysis of Wu and Xie
(2005) shows that HAA degradation rates increase at higher temperatures, with high

removal rates at colder temperatures being obtained by significantly increasing EBCT.
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Chapter 3
Materials and Methods

3.1 Materials

3.1.1 Activated Carbon Specifications

Three types of granular activated carbon (Calgon F400, Norit HD 4000,
AquaCarb 1230C) were used in adsorptive mode RSSCTs and one type of carbon
(AquaCarb 820) was used in pilot scale biodegradation experiments. The properties of all

carbons as received from the manufacturers are summarized in Table 3-1.

Table 3-1: Granular Activated Carbon Manufacturer Specifications

Min

Mesh Todine Effective Uniformity Apparent Abrasion Moisture
Carbon D Size No Size Coefficient Bed Density No. (max)
Type Us '
D, 3 0 0
Sieve mg I,/g mm max g/cm Wt.% Wt. %
Bituminous Calgon 0.55-
Coal F400 12 x40 >1000 0.75 1.9 0.54 75 2
Lignite Hydrodarco
Coal 4000 10x 30 >500 0.6-0.8 2.1 0.39 70 8
Coconut AquaCarb
Shell 1230C 12x 30 1100 0.6-0.85 2.0 0.46-0.52 85
Bituminous  AquaCarb ¢ », 900 1.0-12 15 0.46-0.54 80 -
Coal 820

For use in RSSCTs, the carbons were carefully crushed with a mortar and pestle and
separated with US Standard sieves on a sieve shaker. The fractions between the the #100 and
#200 sieves (dp=0.11 mm) were collected for bench-scale experiments. The crushed GAC

fractions were washed, dried, and stored in a desiccator until use (EPA, 1996).
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Media from the Southern Nevada Water Authority’s (SNWA) River Mountains
water treatment facility was shipped to the University of Colorado for utilization in the
biofiltration pilot study. The full-size bituminous AquaCarb 820 GAC had previously
been in contact with a chlorine residual between 1.5 and 2 mg/L Cl, for more than 5
years. Initial biomass activity was 11,000 pg ATP/g. A baseline measurement for a
carbon with no biomass would be expected to be 0 pg ATP/g, with details of the total

ATP Luminultra method located in Appendix H.

3.1.2 Source Waters

Two source waters were used in this study, with various chemical amendments
and mixtures used to simulate various influent conditions. The typical measured ranges of

the source waters are summarized in Table 3-2.

Table 3-2: Source Water Quality

Alkalinity

Source DOC pH as CaC03 UVA SUVA
Water
mg/L - mg/L cm! (Lmg1m1)
0.015 -
. * -
Boulder Tap 1.3-2.2 7.9 40 0.026 1.15-1.18
Wonderland 4 o4 8.4 120 0.159 1.6
Lake

*from past research

3.1.3 Chemicals

Laboratory grade 5.65-6% sodium hypochlorite solution (CAS 7681-52-9, Fisher
Scientific) and potassium bromide salt (CAS 7758-02-3, Fisher Scientific) were dosed

into the source waters to provide additional exposure to chlorine and bromide for DBP
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formation. Dosed waters were held for a minimum of 24 hours to provide ample time for

formation.

3.2 Methods

3.2.1 Analytical Lab Methods

Table 3-3: Analytical Methods

Measuring Detection

Analyte Units Limit Equipment/Procedure Reference method
Denver Instruments
pH/Temp N/A N/A Model 220 pH and SM 4500-H"
conductivity meter
TOC/DOC ppb 4 Sievers 5310 C TOC SM 5310 C
UVA em’! 0.001  Hach DR-4000 UV SM 5910 B
Spectrophotometer
.. mg/L as Hach Digital Titrator
Alkalinity CaCO, 2 Mool 12900-01 SM 2320 B
Hach Pocket
Free chlorine mggf as 0.02  Colorimeter/Hach SM 4500-C1 G
? Method 8021
Lumitester™ C-110
Luminometer &
Total ATP (tATP) pg/g - Equipment Set (EQP- -
PAC-C110) Deposit &
Surface Analysis
Chloroform ug/L 0.82 Agilent 6890 GC EPA Method 551.1
Dichlorobromomethane ug/L 0.37 Agilent 6890 GC EPA Method 551.1
Chlorodibromomethane ug/L 0.32 Agilent 6890 GC EPA Method 551.1
Bromoform ng/L 0.34 Agilent 6890 GC EPA Method 551.1
Chloroacetic Acid ug/L 0.95 Agilent 6890 GC EPA Method 552.2
Bromoacetic Acid ug/L 0.87 Agilent 6890 GC EPA Method 552.2
Dichloroacetic Acid ug/L 0.96 Agilent 6890 GC EPA Method 552.2
Trichloroacetic Acid ug/L 0.84 Agilent 6890 GC EPA Method 552.2
Dibromoacetic Acid ug/L 0.91 Agilent 6890 GC EPA Method 552.2
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A linear relationship (R*=0.91) between two common biomass analysis techniques, the
Luminultra total ATP method and a phospholipids based method, has been shown when
applied to media from similar source (Dowdell & Summers, 2012). The total ATP

method was used in this research, as the phospholipid method is very time intensive.

3.2.2 Rapid Small Scale Column Tests (after Kempisty, 2014)
The rapid small scale column test (RSSCT) was used for all of the adsorptive
mode GAC experiments in this project. Variables that were modified include GAC type,

DBP speciation, and EBCT while maintaining the same general design.

The EPA Manual for Bench- and Pilot-Scale Treatment Studies guided the set-up
of the RSSCTs (EPA, 1996). Figure 3-1 shows a generic diagram of the RSSCT setup.
Tap water was transferred to 55 gallon HDPE barrels and either left unammended, or
spiked with sodium hypochlorite or potassium bromide to create the desired influent
condition. After being left at lab temperature (21°C) for 24 hours to allow DBP

formation, the barrels were transported to a walk in refrigerator and stored at 4°C.
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Figure 3-1: Base RSSCT Set Up (after Kempisty 2014)

The refrigerated water was then transferred to smaller HDPE carboys and brought
to room temperature as needed for the RSSCT feed. Tubing consisted of 4.76 mL
polytetrafluoroethylene (PTFE or Teflon) or 1/4” outer-diameter stainless steel tubing
(Nalgene 890 FEP by Thermo Fisher Scientific Inc., Waltham, MA). Valves and fittings
were manufactured by Swagelock (Solon, OH). All pumps were PTFE diaphragm pumps
made by Cole-Parmer (Vernon Hills, IL) with diaphragm model 7090-62. Two different

drives were used, model numbers 77521-50 and 7521-40.

Other materials used were 5 gallon plastic carboys for effluent collection, pipettes

(Eppendorf International, Hamburg, Germany), and glass wool. The glass wool was used
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as support for the GAC adsorbers inside of the PFTE columns and also as a prefilter. The
prefiltration acted to remove any particulate matter that could cause a blockage of flow
which would cause a pressure increase to the point where the pump could not move water

through the columns.

There were two GAC columns in series during most experiments, with one
RSSCT “BTBr” having three GAC columns in series. The first two columns
corresponded to 5 minute EBCTs yielding an overall EBCT of 10 minutes for most
experiments. For the “BTBr” influent water RSSCT, a third column corresponding to at
10 minute EBCT was added to the first two, yielding an overall 20 minute EBCT. Valves
were used between the columns to allow sampling at 5 minute, 10 minute and 20 minute
EBCTs at the correct flow rate. The columns were created by pushing a glass wool plug
as a base for the GAC into the bottom of a 4.76 mm diameter column. The ground GAC
was added using Pasteur pipettes to the column, already full of DI water. After each
addition of ground GAC, the column was gently rapped with a wrench to ensure settling
of the carbon. This was important because the volume of GAC was used to determine the

correct amount of contact time.

The glass wool prefilters were changed every 7-14 days depending on visual
inspection and system pressure. A pressure gauge was installed before the columns to
measure the pressure to determine if clogging of the GAC was occurring. A pressure
dampener was installed before the columns to moderate the flow to a steady level instead
of the pulsing created by the diaphragm pump. Effluent was collected in a plastic 5-

gallon carboy.
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Influent samples were taken when new batches of water were created in 55 gallon
barrels. Effluent TOC samples were collected every 1-3 days. At the same time, the
runtime between samples and effluent volume was measured and used to calculate flow
rate and overall throughput. Throughput was reported in terms of bed volumes of the
column. One bed volume of water equals the volume of the GAC in the column. Another
way to report the amount of water treated is in terms of the ratio of GAC mass to the
volume of water treated. This is expressed as the carbon use rate (CUR). The CUR allows
direct comparison of amount of utilized carbon per volume of water treated, making it a
good measure for utilities. The calculated CUR is defined as the density of the GAC

divided by the bed volumes of throughput.

The RSSCT is based upon using GAC of a smaller diameter and maintaining
similitude of dimensionless parameters so that the RSSCT will behave like a full-size
adsorber. An RSSCT designed using a scaling factor and can be used to replicate the full-

scale data in as little as 4% of the time as a pilot scale study (Crittenden et al., 1986a).

Crittenden, et al. (1986a) showed that the EBCTs of an RSSCT and full-scale
adsorber can be related to the particle sizes and intraparticle diffusivity of each adsorber,

as shown in Equation 3-1.

EBCTy; RSC]Z _ [DLC]

= Equation 3 — 1
EBCT,c IRy Dsc Ataron

The radius of the GAC is represented by R and the intraparticle diffusivity is
represented by D. It does not matter if the radius or diameter is used, but diameter can be

more convenient to work with because activated carbon vendors and sieves generally use
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diameter to report size. Equation 3-2 defines the scaling factor, or the proportion that is
used to relate the large column (LC) and small columns (SC), mathematically and
therefore the design.

_Ric

SF =
Rsc

Equation 3 — 2

The scaling factor, or ratio of particle diameters, for all of the RSSCTs in this
study was 8.5. The Proportional Diffusivity (PD) RSSCT approach assumes that the
diffusivities are linearly proportional to the particle size, so Equation 3-1 becomes the

design equation for a PD-RSSCT, Equation 3-3.

EBCTy; RSC]

= E i -
EBCT,, R, quation 3 — 3

The scaling equations recently developed by Corwin and Summers (2012) and
Kempisty (2014) to improve prediction of full-scale GAC capacity are justification

supporting the use of the PD-RSSCT approach in this research.

One way to relate RSSCT performance with a theoretical full-scale adsorber is the
full-scale operating time (FSOT). The FSOT is calculated as the ratio of the volume of
water that has passed through the RSSCT to the volume of the bed, and using the EBCT

of the columns, shown in Equation 3-4.

VOlumewater .
FSOT = BVs - EBCT = Equation 3 — 4
Volume,,1umn
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The scaling factor is used to calculate the FSOT because the volume of the bed is
based upon the length, and the length is calculated by dividing the EBCT divided by the

scaling factor, shown in Equation 3-5.

EBCT
Lengthgs. = 7 Equation3 —5

The scaling factor is the basis of the calculation to determine the size of the

RSSCT and also defines the relation to full-scale adsorbers.

3.2.3 Fixed-Bed Adsorption Modeling (after Kempisty, 2014)

Adsorption Design Software (AdDesignS) from Michigan Technological
University offers three different models to predict target organic removal using GAC
including the Equilibrium Column Model (ECM), the Constant Pattern Homogeneous
Surface Diffusion Model (CPHSDM) and the Pore and Surface Diffusion model (PSDM)
(Kempisty, 2014). The PSDM is a mechanistic model of fixed bed adsorption that has
been shown to successfully model multi-solute adsorption systems, and was exclusively
used in this modeling effort. The PSDM requires input of the system design and
operating parameters such as, particle diameter, bed porosity, bed density, EBCT, filter
approach velocity, and initial concentration of the target compound. The Freundlich
isotherm parameters K, and //n, film mass transfer coefficient, tortuosity, and the surface
and pore diffusion coefficients are also required (Corwin & Summers, 2010). Corwin
demonstrated that intraparticle diffusion is responsible for the majority of mass transfer
control in typical water treatment plants (Corwin & Summers, 2012). Other work has
shown that in the presence of DOM, intraparticle diffusion is dominated by pore diffusion

and surface diffusion can be considered negligible (Kempisty, 2014). Further discussion
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of the PSDM model inputs and their impact is presented in the dissertations of Corwin
and Kempisty who both extensively modeled micropollutant breakthrough using the
PSDM (Corwin, 2012; Kempisty, 2014).

Performing a total of four RSSCTs on bituminous carbon under varying
conditions produced enough data to explore modeling implications. Of particular interest
are competitive adsorption effects, and this modeling effort aims to quantify whether
NOM — THM interactions, THM-THM interactions, or a combination of both are
controlling adsorption of THMs on bituminous GAC.

Kempisty (2014) showed that GAC adsorption capacity for cVOCs was
negatively affected by both DOM and co-solute competition. It has been shown by
modeling and experimentation that compounds of similar adsorption strength tend to
compete for adsorption sites more strongly than compounds of differing adsorption
strengths (Kempisty, 2014). When there are multiple co-solutes (in our case TCM,
DCBM, DBCM, TBM), competition for adsorption sites on the activated carbon is
expected. It has also been shown that in the presence of TOC, bed volumes to 10%
breakthrough of VOC’s were reduced by 28% when comparing the low-TOC water
(TOC=0.3 mg/L) against organic-free water, with larger differences observed for higher
TOC waters (Kempisty, 2014). Sontheimer et al., 1988 reported 36 — 86 % capacity loss
for chloroform from preloading a carbon with tap water. NOM-solute model runs are
based on empirical relationships developed using waters containing varying influent

characteristics.
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3.2.4 Biofilter Pilot Column Tests (after Zearley, 2012)

The biofilters were packed into 25 mm inner diameter laboratory glass columns
(ACE Glass 5820-37) with Teflon end caps and stainless steel fittings. Every filter had a
layer of support media (2 mm glass beads) below the filter media. The support media was
not included in the calculation of the EBCT. A needle valve after each column was used
to control flow. Sampling ports were located immediately before and after each column
to assess the removal associated directly with the filter. The biofilters were gravity fed
from multiple HDPE feed barrels located in an upstairs laboratory. The feed barrels were
refilled as needed, usually every two to three days.

Three biofilter setups were operated in parallel as a one-pass system to simulate
full-scale operation. Each biofilter setup consisted of three columns in series (Figure 3-2)
with a target overall EBCT of 20 min. The target hydraulic loading rate (HLR) for all of
the filters was 4.14 m hr''. While these loading rates are on the low end of filter operation
rates, they facilitated the operation of the filters as they decreased the required volume of
water. All of the systems were operated at lab temperature (20 & 2 °C), which is within
the range of temperatures that, depending on geographic location, most water treatment
facilities experience. The flow varied due to biomass and particle buildup within the filter
and was measured every 2 to 3 days and adjusted as needed. The change in hydraulic
head due to the water level decreasing in the feed tanks did not cause a measurable
change in the biofilter flow rate. The flow was monitored by measuring the amount of
water collected in a graduated cylinder in 1 min and the flow was adjusted by a needle

valve immediately after the biofilter.

www.manaraa.com



33

Influent delivered
via gravity flow

Sampling
Ports ¢ v ¥
EBCT EBCT EBCT
5 minutes 10 minutes 20 minutes

Effluent to drain
Figure 3-2: Biofilter Setup

Influent and effluent samples were collected from sampling ports immediately
before and after each biofilter. The day prior to sampling, the flow was measured, and if
required, adjusted to the target hydraulic loading rate. The flow was rechecked, and
adjusted as needed, prior to sampling. If adjusted, a minimum of 10 bed volumes were
allowed to pass before samples were taken.

The biofilters were sampled for TOC, THMs and HA As approximately once per
week for the duration of each month long run, for a total of 3 sampling events per run.
The biofilters were operated for two months total, with the first month long run
investigating the effect of influent bromide and the second month long run investigating

the effect of influent TOC. Paired influent and effluent samples were taken at all times.
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Chapter 4
Results and Discussion

Experiments utilizing RSSCTs to assess adsorption behavior and pilot scale
biofilters to assess biodegradation behavior were carried out. Results from the adsorption
columns are presented in Sections 4.1 and 4.2 and those from the biofilters in Section 4.3.
Two RSSCTs were performed. RSSCT #1 evaluated the effect of three different GAC
types on TOC and DBP removal, with one of the carbons moving on to further testing in
RSSCT #2. RSSCT #2 evaluated the impact of source water quality on GAC filter
performance using the selected carbon from RSSCT #1. Results from both RSSCTs and
a modeling effort using the Pore Surface Diffusion Model (PSDM) are discussed. Pilot
scale biofilters were operated for a period of about two months, with the first month
(Phase 1) investigating the impact of influent bromide on HAA biodegradation, and the
second month (Phase 2) investigating the impact of influent TOC and temperature on

HAA biodegradation.

4.1 Effect of GAC type (RSSCT #1)

A set of three RSSCTs with GAC from three different base materials were run to
evaluate the effectiveness of GAC for THM adsorption. Bituminous-based, lignite-based
and coconut-based activated carbons were evaluated in RSSCT #1 for TOC and THM
removal, with the experimental results used to choose a GAC type to test in further

RSSCT and pilot systems under differing influent, EBCT, and temperature conditions.
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In a GAC bed, once the mass transfer zone reaches the end of the bed, target

compounds begin to appear in the effluent. The effluent concentration can be expressed

as a normalized effluent (C/Cy), defined as the ratio of the effluent concentration to the

influent concentration.

In this section, breakthrough results for TOC and THM are presented and

discussed. The same influent water was supplied to all three carbons in order to compare

performance and the influent water quality is summarized in Table 4-1. For each RSSCT

set up, Boulder tap water was supplied in batches from a 40L Nalgene container for

between 8 to 12 days.

Table 4-1: RSSCT #1 Influent Characteristics

TOC TTHM TCM DCBM DBCM TBM pH
mg/L Mg/l ug/L ug/L ug/L ug/L
1.3 29 28.2 0.9 BDL BDL 7.9

BDL — below detection limit of 0.3 pg/L

4.1.1 TOC Adsorption

TOC adsorption is important to this study, as low TOC removal would result in

reformation of high levels of DBPs upon rechlorination. Rechlorination in the distribution

system post GAC treatment must occur as GAC reacts with the chlorine and a chlorine

residual is required at all points in the distribution system, termed secondary disinfection.

Thus, a GAC that effectively removes both TOC and THMs is most desirable. Effluent

TOC was sampled at 5 and 10 minute EBCTs, with the results shown in Figure 4-1.

Previous studies have shown THM breakthrough to lag behind TOC breakthrough in

columns designed for micropollutant removal (Sontheimer et al., 1988; Johnson et al.,

2009).
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—e—Lignite S5min

—+—Coconut 5min

—&—Bjtuminous S5min

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
Throughput (Bed Volumes)

Figure 4-1: TOC Breakthrough at Smin EBCT for three different GAC types - (Inf.
TOC = 1.3 mg/L)
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=O=Lignite 10min

=2=Coconut 10min

—&—=Bjituminous 10min

0.0 ® - - - - - - - -
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000
Throughput (Bed Volumes)

Figure 4-2: TOC Breakthrough at 10min EBCT for three different GAC types - (Inf.
TOC= 1.3 mg/L)

The effect of carbon type on TOC breakthrough at both 5 and 10 minute EBCTs
is shown in Figures 4-1 and 4-2. In all columns a non-adsorbable fraction of 10 to 15 %
was observed. The lignite and bituminous GACs showed similar behavior with BV,
values of 14,000 at both EBCTs, while the BV50 for the coconut GAC at both EBCTs
was about 3,000. TOC breakthrough for the bituminous GAC is similar to that predicted
by the Zachman and Summers (2010) model which predicts 50% breakthrough at about
16,000 BV. Coconut carbons are known to have more micro porous pore structure than
their coal-based counterparts, and have been shown to perform poorly for TOC removal

(Palmdale Water District, 2011; Potwara, 2012).
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4.1.2 DBP Removal

THM compound properties that affect adsorption affinity and GAC capacity,
including molar mass, octanol-water partition coefficient, solid phase adsorption capacity
at an arbitrary liquid phase concentration of 10 ug/L, and Freundlich modeling
parameters for adsorption on bituminous carbon are shown in Table 4-2. The
adsorbability of the TTHM species is TCM - DCBM - DBCM > TBM. This order of

breakthrough has also been shown in columns (Fokken & Kurtz, 1984).

Table 4-2: Trihalomethane Adsorption Affinity Indicators for Bituminous based GAC
(Speth & Miltner, 1990; World Health Organization, 2004)

Compound Molar Mass  log Kow K 1/n d1o
g/mol (mg/g)*(L/mg)*(1/n) mg/g
TCM 119.37 1.97 9.4 0.67 0.43
DCBM 163.8 1.88 22.2 0.66 1.09
DBCM 208.28 2.08 47.3 0.64 2.53
TBM 252.73 2.38 91.8 0.67 4.30

The octanol-water partition coefficient (K,y) is the ratio of a chemical's
concentration in octanol to its concentration in the aqueous phase of a two-phase system
at equilibrium. Increasing K, values indicate increasing hydrophobicity, and
correspondingly, increasing affinity for adsorption (McCarty et al., 1987). The
experimentally determined Freundlich isotherm parameter “K” is an indicator of
adsorption capacity used in modeling. The amount of solute adsorbed per unit weight of
adsorbent is proportional to “K” and hence, increasing values of “K” indicate increasing
adsorbability (Sontheimer et al., 1988).

HAA adsorption results for adsorptive RSSCT #1, listed in Appendix D, were
nonsystematic and thus not analyzed to the same extent as THM results. HAA adsorptive

properties are listed in Table 4-3.
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Table 4-3: HAA Adsorption Affinity Indicators (Speth & Miltner, 1990; World Health

Organization, 2004)
Compound Molar Mass  log Kow K 1/n d1o

g/mol (ug/g)*(L/ug)™(1/n) mg/g
MCAA 94.49 0.22 0.43 0.78 0.003
MBAA 138.95 0.41 94.93 0.36 0.21
DCAA 128.94 0.92 208.83 0.30 0.42
DBAA 217.84 0.70 504.89 0.29 0.98
TCAA 168.38 1.33 704.53 0.25 1.25

Speciated THM breakthroughs along with TOC for reference are shown in

Figures 4-3 through 4-5 and the BVs, values summarized in Table 4-4. The influent THM

concentration was dominated by TCM, hence the TTHM and TCM breakthroughs trend

closely throughout all the speciated breakthrough graphs presented. The TCM

breakthrough for all three GAC types shows the chromatographic effect (normalized

concentration reaching values greater than one). Desorption due to competitive

adsorption and concentration gradient reversal has been shown to cause chromatographic

peaking in many studies (Sontheimer et al., 1988; Babi et al., 2007; Johnson et al., 2009).

The more strongly adsorbing coconut based GAC yielded the highest peak overshoot

concentration, 1.6, while the other two GACs had peak C/Cy of about 1.2. Comparison

with Table 2-3 shows that experimental breakthrough occurs in the ranges reported in

past studies.
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Figure 4-4: TTHM, Speciated THM and TOC Breakthrough - Lignite 10min EBCT
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Figure 4-5: TTHM, Speciated THM and TOC Breakthrough - Coconut 10min EBCT

Table 4-4: Bed Volumes to 50% Breakthrough (BV'sy)

TOC TOC TTHM TCM DCBM
EBCT 5min 10min 10min 10min 10min
Bituminous 12,000 14,000 15,000 15,000 NBT
Lignite 11,000 12,000 18,500 18,000 NBT
Coconut 2,500 3,000 21,000 21,000 NBT

*NBT = No Breakthrough to 50%

As shown in Figure 4-6 and summarized in Table 4-4 the coconut-based GAC
was the best performing GAC for THM removal and the lignite-based GAC slightly
outperformed bituminous-based GAC. No DCBM breakthrough was found for the

coconut-based GAC, while 10% breakthrough occurred at about 30,000 BV for the other
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two GACs. For both the bituminous and lignite based GACs, the BV values of TOC

and TCM were similar, indicating similar performance for TCM and THM precursors.

1.6

I —@—Calgon TTHM
1.4 T

i ——Lignite TTHM
1.2 T

L —&—Coconut TTHM
1.0 1

0.0 : I
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
Throughput (Bed Volumes)

Figure 4-6: TTHM Breakthrough at 10min EBCT — Carbon Type (Inf. TTHM = 28.5
ug/L)

Coconut based GACs have the highest iodine numbers, which correspond to a
higher capacity to adsorb small molecules, such as volatile organic chemicals
(Sontheimer et al., 1988). These results indicate coconut GAC to be most effective for
THM removal, but least effective for TOC removal. Due to low TOC removal, coconut
GAC is not suited for distribution system applications due to high DBP reformation

potential from early TOC breakthrough.
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As shown in Figures 4-4 through 4-6 and Table 4-4, the bituminous GAC
performed the best for combined TOC and TTHM removal, and hence was chosen for

further testing the effect of source water quality.

4.2 Effect of Source Water Quality (Adsorptive RSSCT #2)

The objective of this work was to evaluate the impact of different influent
conditions in response to additional chlorination and a higher level of bromide on THM
and TOC adsorption. All three of the columns in RSSCT #2 were packed with
bituminous GAC at an EBCT of 10 min and fed three different influent waters. The three
influent waters were Boulder tap water (BT), Boulder tap water spiked up to 1 mg/L
chlorine (BTCl,), and Boulder tap spiked to 100 ug /L bromide (BTBr). Average influent

values are shown in Table 4-5.

Table 4-5: Average influent Water Characterization

Source Water TOC TTHM TCM DCBM DBCM TBM
mg/L ug/L ug/L ug/L ug/L ug/L

Boulder Tap (BT) 2.2 58.5 57.5 1.1 BDL BDL

Boulder Tap +

Chlorine (BTCI,) 2.3 85.9 71.4 14.6 BDL BDL

Boulder Tap +
Bromide (BTBr) 2.0 65.3 42.4 9.0 9.7 4.2

BDL — below detection limit of 0.3 pg/L

The TTHMs in the BT water were 98% TCM, while the addition of chlorine
increased the TTHMs by 47% and shifted the speciation to about 80% TCM and 20%
DCBM. The addition of bromide to the BT water increased the TTHMs by 12% and
shifted the speciation to about 65% TCM, 14% DCBM, 15% DBCM and 6% TBM. Mok
et al. (2005) found that shifting of the dominant THM species from chlorinated one to

brominated one occurs at very low bromide concentration reflecting the significant
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impact of bromide on THM production. Pourmoghaddas et al. (1993) reported similar
shifts in THM speciation in the presence of chlorine and bromide.

While the average values reported in Table 4-5 are good generalizations of the
influent makeup, it was found that the influent THM concentrations of all three influents
decreased over the month long experiment run time. This trend is shown in Figure 4-7,

along with a linear interpolation between points, which was used for data normalization.

Experiment Run Time (Days)

—O—BT Influent TTHN

140 Interpolation
120 —{—BTCI2 Influent
TTHM
100 Interpolation
—2—BTBr Influent
=
~ TTHM
2 80 Interpolation
= ® BT Influent TTHN
= 60
» Data
40 B BTCI2 Influent
TTHM Data
20
I A BTBr Influent
TTHM Data
0 1 I 1 I 1 I 1 I
0 10,000 20,000 30,000 40,000

Throughput (Bed Volumes)
Figure 4-7: Influent TTHM Concentration Gradient - Influent Chlorine and Bromide)
The impact of decreasing influent concentration on TCM breakthrough was
modeled with the PSDM and results are shown in Figures 4-8 and 4-9. Interpolated
influent values (Figure 4-7) were input to the PSDM in order to generate breakthrough

graphs, which are shown alongside experimental effluent data. TCM makes up >90% of
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the TTHM for the waters BT and BTCI; and is modeled as a close representation of

TTHM.
120
/‘\\ .
100 + [ O [ BT TCM 10min
i | EBCT MODEL
80 T
o I —&— BT TCM 10min
S Y A W . EBCT DATA
s 60+ f i\
s SO T\ T
[ e N WY A NS L YO
~ S N 2 N
————————————— - - - BTCI2 TCM 10min
40 7 EBCT MODEL
20 T .
—&—BTCI2 TCM 10min
: EBCT DATA
0 : | -
0 10,000 20,000 30,000 40,000 50,000 60,000

Throughput (Bed Volumes)

Figure 4-8: Model and Experimental Breakthrough of TCM at 10min EBCT for the
BT and BTCI, waters

Both model and experimental data exhibit negative slopes after initial
breakthrough due to decreasing influent concentration. To facilitate more conventional
interpretation of the experimental breakthrough, the data were normalized with the linear
regression of the influent concentration values shown above in Figure 4-7. Normalizing
the data allows comparison of BVsy and BV values between our experimental runs and
with literature. Data normalization is shown in Figure 4-9 compared with normalized

model runs.
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Figure 4-9: Model and Experimental Normalized Breakthrough at 10min EBCT

Model data presented in Figure 4-9 are shown at an increased bed volume interval
for clarity. In both Figures 4-8 and 4-9, the model fits the BTCl, data very closely but
over predicts BT breakthrough significantly. This trend is likely due to the continuing
decreasing concentration of the BT influent and the model’s inherent limitations in
predicting such a variable influent. The RSSCT #2 data henceforth presented in this

section has been normalized to the decreasing influent as shown in Figure 4-9.

4.2.1 TOC Adsorption

If GAC is to be utilized in the distribution system, then rechlorination post GAC
treatment is required as GAC reacts with the chlorine and a chlorine residual is required
at all points in the distribution system; secondary disinfection. Thus, an understanding of

the TOC breakthrough is important, as the added chlorine will react to form more DBPs.

www.manaraa.com



48

Bituminous GAC was used for all three columns in RSSCT #2, thus the results can be

used to assess the effects of influent bromide and chlorine concentrations on TOC

breakthrough. The TOC results at EBCTs of 5and 10 min EBCT are shown in Figures 4-

10 and 4-11, respectively.

1.0

09 T

TOC C/C,

—8—BTCI2 5min

—4—BTBr 5min

=BT 5min

0.0 ——+—

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

Throughput (Bed Volumes)

Figure 4-10: TOC Breakthrough at 5min EBCT for three influent conditions — BT,

BTCl; and BTBr
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Throughput (Bed Volumes)
Figure 4-11: TOC Breakthrough at 10min EBCT for three influent conditions — BT,

BT with added Chlorine and BT with added Bromide

Table 4-6: Bed Volumes to 50% Breakthrough (BVsy) of TOC at influent TOC

concentration of 2.1-2.3 mg/L

EBCT 5min 10min 20min
BT 6,000 9,500 -
BTCl, 6,600 9,000 -
BTBr 8,200 13,000 15,000
Zachman &

Summers model - 9,300 11,200

Bituminous
RSSCT#1* 12,000 14,000 -

*Influent TOC of 1.3 mg/L
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The effect of chlorine did not seem to be significant as the BTCI, and BT waters

TOC breakthrough behaved similarly. One trend that persists for both EBCTs is that

bromide addition appeared to have a positive impact on TOC removal, especially in the

first half of the run. Every datum point for the BTBr water up until about 15,000 BV

shows enhanced TOC removal relative to BT and BTCI, waters.

1.0

0.9

=—4—BTBr S5min
=O=BTBr 10min

—8—BTBr 20min

0 10,000 20,000 30,000 40,000
Throughput (Bed Volumes)

50,000

Figure 4-12: TOC Breakthrough at 5, 10 and 20min EBCT for the BTBr water

The TOC breakthrough at 5, 10 and 20 min are shown in Figure 4-12 for the BT

water with added bromide. The results suggest that EBCT affects TOC removal; with the

20 minute EBCT consistently showing enhanced TOC removal relative to the 5 and 10
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minute EBCTs. The TOC breakthrough results from RSSCT #1 also showed better

removal at the 10 min EBCT relative to that at 5 min.

4.2.2 DBP Removal

HAA adsorption results for adsorptive RSSCT #2, located in Appendix D, were
nonsystematic and thus not analyzed to the same extent as THM results. Low influent
HAA concentrations in both the BT and BTBr waters in addition to irregular
breakthrough in the BTCI, water contributed to the nonsystematic nature of the data.

Speciated breakthrough for THMs are presented along with TOC for reference in
Figures 4-13 through 4-17 for each of the runs. As shown in Table 4-5, the majority of
the influent TTHM is TCM 1in all cases, hence the TTHM and TCM breakthroughs results
trend closely with each other. All five graphs show chromatographic effects as
normalized concentrations reach values greater than one. The 50% breakthrough values
are shown in Table 4-6. A comparison of the TTHM breakthrough for all five runs is

shown in Figure 4-18.
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Figure 4-14: TTHM, Speciated THM and TOC Breakthrough - BTCI, 10min EBCT
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Figure 4-15: TTHM, Speciated THM and TOC Breakthrough - BTBr 5min EBCT
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Figure 4-16: TTHM, Speciated THM and TOC Breakthrough - BTBr 10min EBCT
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Figure 4-17: TTHM, Speciated THM and TOC Breakthrough - BTBr 20min
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Figure 4-18: TTHM Breakthrough - Influent Chlorine and Bromide
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TOC TTHM TCM
EBCT 5 10 20 5 10 20 5 10 20
min  min min min  min min min  min min
Boulder Tap
6.0 9.5 - - 16.5 - - 16.5 -
(BT)
Boulder Tap +
Chlorine (BTCl,) | ¢ %0 - | - &> - | - 80 -
Boulder Tap +
2 13. 15. 14. 16. 14. 11. 14. 14.
Bromide (BTB) 8 3.0 5.0 4.0 6.5 4.0 0 4.0 4.0
DCBM CDBM TBM
EBCT 5 10 20 5 10 20 5 10 20
min  min min min  min min min  min min
Boulder Tap
- 30.0 - - NBT - - NBT -
(BT)
Boulder Tap +
- B - - B - - B -
Chlorine (BTCl,) NBT NBT NBT
Boulder Tap +
Bromide (BTBr) 29.0 30.0 25.5 NBT 31.0 NBT | NBT NBT NBT

* NBT = No Breakthrough

Table 4-7 is a summary of the data presented for THM and TOC removal from

RSSCT #2. Elevated influent TTHMs cause early breakthrough of TTHMs. In the

following sections, trends from the data presented above with be explored and discussed.

On average the ratio of BV, values for TCM to TOC for the five cases above and for

RSSCT #1 with bituminous GAC, was 1.14 with a standard deviation of 0.37. This

indicates that the adsorption performance for TCM and TTHM precursors, as measured

by TOC, is similar under these conditions with prechlorination.
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4.2.3 Effect of Influent TOC on TTHM Breakthrough

Comparison of RSSCT #1 Boulder Tap (TOC=1.3 mg/L , TTHM = 29 ng/L) and
RSSCT #2 Boulder Tap (TOC=2.2 mg/L., TTHM = 58.5 ng/L) allows the effect of
influent TOC on THM removal to be investigated as both RSSCTs were performed with
bituminous carbon. TOC and THM data from these two scenarios are graphed in Figure
4-19. No significant effect of influent TOC on THM removal is observed in Figure 4-19.
As expected, the higher TOC and THM influent water (RSSCT #2) breaks through
slightly earlier than the lower TOC and THM water (RSSCT #1). While the higher THM
water breaks through before the lower THM water, there are a few suspect points
between 15,000 and 30,000 BV where the lower THM water shows higher C/C, values.
Since the RSSCT #2 data had to be normalized to decreasing influent concentration
values while the RSSCT #1 data were normalized to a constant influent value, some

inconsistencies such as these can be expected.
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Figure 4-19: Effect of Influent TOC on THM Breakthrough at 10min EBCT — Boulder
Tap Water from RSSCT #1 and RSSCT #2

4.2.4 Effect of EBCT on THM Breakthrough

The influent water BTBr (Boulder tap spiked with bromide) was monitored at
EBCTs of 5, 10 and 20 minutes in order to investigate the effects of EBCT on THM
breakthrough. Data from the experimental columns are shown in Figures 4-20 and 4-21.
The PSDM model was run for the same three EBCTs at the same influent concentration

and the results are shown in Figure 4-22.
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Figure 4-20: Experimental Effect of EBCT on TCM Breakthrough - BTBr water
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Figure 4-21: Experimental Effect of EBCT on DCBM Breakthrough — BTBr water

(Inf DCBM= 9.0 pg/L)
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Figure 4-22: Single Solute Modeled EBCT Effect on TCM Breakthrough in Organic
Free Water

The observed effects of EBCT on TCM and DCBM breakthrough are consistent
with modeled results, showing that GAC adsorption capacity does not increase with
increasing EBCT. Results from the 5 min EBCT initially break through first but reach
total breakthrough last. The 20 min EBCT breakthrough initially breaks through last, but
has the steepest breakthrough and reaches total breakthrough first. The results from the

10 min EBCT are in between.

4.2.5 Effect of Influent Concentration on TTHM Breakthrough

The effect of influent concentration on breakthrough for microgram per liter
concentrations of THMs is presented in Figures 4-23 through 4-25 for both modeled data

and experimental data for both single-solute and co-solute scenarios.
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Figure 4-23: Modeled Single-solute TCM Breakthrough at 10min EBCT at different
influent concentrations

The modeled single solute graph shows that higher influent concentrations of
TCM correspond to earlier breakthrough. While it is not surprising to see this trend, as it
is known to occur at mg/L concentrations. The work done by Corwin and Summers, 2012
and Summers et al., 2013 at nanogram/L concentration showed no such effect of influent

concentration.
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Figure 4-24: Experimental TCM Breakthrough at 10min EBCT

Experimental data for TCM breakthrough supports the model implications,
showing the water with the highest influent concentration of TCM (BTCl,) breaking
through first. The points at which BTBr (42.4 pg/LL TCM) breaks through higher than BT
(57.5 pg/L TCM) can be explained by the higher TTHM content in the BTBr water (65.3
ug/L TTHM) relative to the BT water (58.5 ug/L TTHM). A co-solute model run

mimicking experimental influent conditions was conducted to verify this hypothesis.
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Figure 4-25: Modeled Co-Solute TCM Breakthrough at 10min EBCT at three influent
concentrations

The co-solute model shows that the BT and BTBr breakthrough are much closer
than in the single solute model, thus placing the conflicting experimental data within

reason.

4.2.6 Relative Effects of NOM and Co-solutes on THM Breakthrough

Single solute runs represent how the solute should behave if only that solute at the
specified concentration is present in the water. Experimental data and various modeling
scenarios are compared against the reference of the single solute run due to its simplicity.
Figure 4-26 shows a single solute, same concentration model output, which demonstrates
the differences in absorbability between the THMs (Table 4-2). The results in Figures 4-
13 through 4-18 and Table 4-7 indicated breakthrough of THMs according to the

expected order from the literature and Table 4-2 values, with TCM breaking through first
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followed by DCBM, and DBCM. Model results, Figure 4-26, indicate that the earliest
expected breakthrough of TBM occurs at about 120,000 bed volumes, much past the
experimental RSSCT run time of 40,000 bed volumes. No breakthrough of the most

strongly adsorbing compound, TBM, occurred throughout the duration of the

experimental adsorption RSSCT.
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Figure 4-26: Modeled Single-Solute THM Relative Breakthrough

The next step was to graph each of the single-solute breakthrough alongside their

co-solute and NOM-solute breakthrough (Figure 4-27 and 4-28). Co-solute and NOM-

solute runs represent how the solute should behave when there is competition for

adsorption sites. NOM-solute
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Figure 4-27: Single-solute, Co-solute Breakthrough and NOM-Solute for TCM and

DBCM- PSDM Model
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Figure 4-28: Single-solute, Co-solute Breakthrough and NOM-Solute for DCBM and
TBM- PSDM Model

The NOM-solute model consistently reached breakthrough first, followed by the
co-solute and single-solute model. The same trend is present for each of the THMs
modeled, indicating that the presence of both NOM and co-solutes are important to
consider when analyzing THM breakthrough.

The co-solute chromatographic effects seen in Figures 4-27 and 4-28 are similar
to experimental results and reported literature and may be a result of both competitive
adsorption and/or desorption due to concentration gradient reversal (Babi et al., 2007;

Water Research Foundation, 2009; Sontheimer et al., 1988). Desorption may occur when
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adsorbed compounds are displaced by more strongly adsorbing compounds (competitive
adsorption), or when the concentration gradient in the adsorber reverses and adsorbed
compounds are driven into the water phase by back diffusion (Corwin & Summers,
2010). Studies by Babi et al., (2007) and Kim and Kang, (2008) report decreasing
influent TTHM values and corresponding desorption incidents due to concentration
gradient reversal. The model with NOM does not yield desorption as it is based not on
competition, but on the diminished single solute adsorption capacity.

Model and experimental TTHM values are shown alongside each other in Figures
4-29 through 4-31 and Tables 4-8 through 4-12. Experimental breakthrough trends well
with model breakthrough showing a positive relationship between model output and
experimental data. This result brings confidence to the model output with single-solute

and NOM-solute conditions tending to bound experimental breakthrough.
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Figure 4-29: BT 10min ECBT Model and Experimental TTHM Breakthrough (Inf
TTHM = 58.5 ug/L)
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Figure 4-30: BTCl, 10min EBCT Model and Experimental Breakthrough (Inf TTHM
=85.9 ug/L)
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Figure 4-31: BTBr 10min EBCT Model and Experimental Breakthrough (Inf TTHM =

65.3 ug/L)

Table 4-8: BT 10min EBCT Model and Experimental Breakthrough

TCM (inf=57.5 ug/L) DCBM (inf= 1.1 pg/L)
Modeling Condition 10% 50% 10% 50%
Single-Solute BV*10° 12 14 130 139
Co-Solute BV*10° 12 14 31 45
Co-Solute % Diff 2.0% 0.0% 76.1% 67.6%
NOM-Solute BV*10° 5 5 38 42
NOM-Solute % Diff 63.1% 62.7% 70.7% 69.6%
Experimental Data BV*10° 6 17 24 30
Experimental Data % Diff 51.8% 25.9% 81.9% 78.4%
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Table 4-9: BTCI, 10min EBCT Model and Experimental Breakthrough

TCM (inf= 71.4 pg/L) | DCBM (inf= 14.6 pg/L)
Modeling Condition 10% 50% 10% 50%
Single-Solute BV*10° 12 13 50 53
Co-Solute BV*10° 11 12 29 37
Co-Solute % Diff 3.5% 3.2% 42.2% 30.2%
NOM-Solute BV*10° 4 5 16 18
NOM-Solute % Diff 61.9% 61.9% 67.6% 66.0%
Experimental Data BV*10° 4 6 27 -
Experimental Data % Diff 65.2% 52.0% 46.0% -

Table 4-10: BTBr 10min EBCT Model and Experimental Breakthrough

TCM (inf=42.4 pg/L) DCBM (inf= 9 pg/L) CDBM (inf=9.7 pg/L) | TBM (inf=4.2 pg/L)
Modeling
Condition 10% 50% 10% 50% 10% 50% 10% 50%
Single-Solute
BV*10° 14 15 59 63 134 143 296 319
Co-Solute BV*10° 13 14 33 42 59 63 91 108
Co-Solute % Diff 2.9% 5.4% 43.7% 34.1% 56.3% 55.9% 69.2% 66.1%
NOM-Solute BV*10? 5 5 19 21 42 46 86 96
NOM-Solute % Diff 63.4% 63.0% 67.8% 66.5% 68.6% 67.6% 70.9% 70.0%
Exp Data BV*10® 10 14 22 30 30 31 34 -
Exp Data % Diff 26.5% 5.4% 62.7% 52.4% 77.6% 78.3% 88.5% -

Table 4-11: Reverse BTBr Concentration Model Breakthrough

TCM (inf= 4.2 pg/L) DCBM (inf= 9.7 ug/L) | CDBM (inf=9.0 ug/L) | TBM (inf=42.4 ug/L)
Modeling
Condition 10% 50% 10% 50% 10% 50% 10% 50%
Single-Solute
BV*10° 30 32 57 61 138 147 136 148
Co-Solute BV*10° 23 25 44 48 86 95 120 138
Co-Solute % Diff 21.3% 22.5% 23.7% 21.8% 37.4% 35.3% 12.1% 6.8%
NOM-Solute BV*10° 10 11 18 20 43 48 42 48
NOM-Solute % Diff 66.6% 65.6% 68.4% 67.3% 68.6% 67.7% 68.8% 67.9%
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Table 4-12: Same Concentration Model Breakthrough

TCM (inf=15 pg/L) DCBM (inf= 15 ug/L) | CDBM (inf=15 pg/L) TBM (inf=15 pg/L)
Modeling
Condition 10% 50% 10% 50% 10% 50% 10% 50%
S'\’/‘?:ggso'me 19 21 49 53 114 122 193 208
Co-Solute BV*10° 17 18 37 42 84 96 131 164
Co-Solute % Diff 12.4% 13.3% 24.5% 20.0% 26.5% 21.3% 32.4% 21.1%
NOM-Solute BV*10° 7 7 16 18 36 40 59 65
NOM-Solute % Diff 65.5% 64.8% 67.3% 66.3% 68.2% 67.3% 69.7% 68.6%

The data presented in Figures 4-29 through 4-31 and Tables 4-8 through 4-12
allows generalization to be made about the relative effects of NOM and co-solutes on
THM breakthrough.

When THM “A” is present in significantly greater concentration than competing
THM “B” (THM “A” >> THM “B”), co-solute effects are inconsequential compared to
NOM-solute effects on the adsorption of THM “A”. In the same case, co-solute effects
must be taken into account when considering the adsorption of THM “B”. The data in
Tables 4-8 and 4-9 shows TCM at significantly greater concentrations (57.5 png/L, 71.4
ug/L) than DCBM (1.1 pg/L, 14.6 pg/L) respectively. In these cases, the NOM-solute
model for TCM shows a much closer correlation to experimental data than the co-solute
model, while the co-solute model for DCBM shows a close correlation to experimental
data. In summary, THM “A” exerts a significant co-solute competition effect on THM
“B”, while THM “B” exerts no such effect on THM “A”. Thus, co-solute effects must be
considered when the compound of interest is present in orders of magnitude less than
other competing compounds.

Modeling all THMs at the same concentration elucidated the effect of THM
adsorbability on the co-solute and NOM-solute model outputs. Throughout both the

experimental data and modeling scenarios it is demonstrated that THM adsorbability is
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the most important factor in determining breakthrough order, with influent concentration
determining localized breakthrough. Table 4-12 shows that for the NOM-solute and more
drastically co-solute models, the difference from the single-solute model increases with
increasing adsorbability. Weakly adsorbed compounds reach breakthrough fast and are
less affected by the breakthrough of strongly adsorbed compounds. As the strongly
adsorbed compounds reach breakthrough, they are affected by the prior breakthrough of
all the weakly adsorbed compounds. Thus, the observed co-solute effect is greater for
strongly adsorbed compounds than for weakly adsorbed compounds (Sontheimer et al.,
1988).

NOM-solute model outputs for all THMs tended to have relatively constant %
difference from the single solute outputs, generally between 60-70%. Past studies have
shown that capacity losses from preloaded carbon compared to single-solute isotherms
for many adsorbates (including TCM) are not correlated to the K and n-values of the
adsorbate (Sontheimer et al., 1988). This finding supports the modeling results, which
indicate very little correlation between THM adsorbability and effect of NOM on
breakthrough.

4.3 Effect of Temperature, Influent Bromide and Influent TOC on
Biodegradation of DBPs (Pilot Runs #1 and #2)

Pilot scale biofilter columns were operated over a period of two months, to
investigate the biodegradation of THMs and HA As in aged/exhausted GAC. Three pilot
column set-ups with sample ports at Smin, 10min and 20min EBCTs were utilized in two

phases (Figure 4-32).
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Figure 4-32: Experimental Setup

In the first phase as shown in Table 4-13, the three systems were run to isolate the effect
of influent bromide (A-1, B-1, C-1) In the second phase, the system was run to isolate the
effect of influent TOC (A-2, B-2, C-2) and temperature. The same exhausted GAC was
used in the columns throughout the two pilots runs, with periodic biomass samples taken

to track microbial activity.

Table 4-13: Influent Conditions

Pilot Column Target Condition TOC pH Cl, Resid Temp
ID - Run Number mg/L mg/L °C
A-1 0 pg/L Br 1.3 7.9* 0.54* 21
B-1 50 pg/L Br 1.2 7.9* 0.54* 21
c-1 100 pg/L Br 1.2 7.9* 0.54* 21
A-2 1 mg/LTOC 1.4 7.9 0.54 variable
B-2 2 mg/LTOC 2.2 8.0 0.64 21
C-2 3.5 mg/LTOC 3.6 8.1 0.69 21

*Data used from Run A-2, unammended tap water conditions
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Bio-GAC from the Las Vegas Valley Water District (LVVWD) was used to pack
the pilot columns, with the GAC previously being exposed to a residual of 1.5-2 mg/L
Cl, for several years. No adsorption was observed or expected. Results presented in this
section include TOC, THM and HAA removals, which in tandem with biomass
measurements are used to produce a fit for the first-order rate equation known to apply to
the biodegradation of micropollutants (Zearley & Summers, 2012). Experiments were
also carried out to evaluate the reformation of HAAs after biotreatment, as the GAC
reacts with the residual chlorine and a chlorine residual is required at all points in the

distribution system

4.3.1 Biomass Distribution Throughout Pilot Operation

Three ATP sampling events took place throughout the duration of the pilot
testing. ATP was sampled on the first day of run 1, last day of run 1/first day of run 2
(after 1 month) and at the conclusion of run 2 (after 2 months). GAC samples were taken
at the top of the 5, 10, and 20 min EBCT columns and analyzed for ATP, which is an
indirect but well correlated measurement of biomass activity (Dowdell & Summers,

2012).

www.manaraa.com



76

140,000 OTop of 5 min EBCT Column
120,000 A Top of 10 min EBCT Column
_ B Top of 20 min EBCT Column
& 100,000
o
-
<
g 80,000
)
©
g 60,000
2
[
40,000
20,000
0

A-.1 Start B.-1 Start C-.1 Start A-.1 End B.-1 End C-.1 End A-Z End B-.Z End C-IZ End
A-2 Start B-2 Start C-2 Start

Figure 4-33: Biomass Distribution in Chlorinated Influent Biofilter

In a biofilter treating water without a chlorine residual, expected biomass
distribution is highest at the top of the filter and lowest at the bottom of the filter where
there is not enough primary substrate to support high levels of microorganisms (Wang et
al., 1995). Chlorine is known to be toxic to microorganisms; however, Kim and Kang
(2008) showed that biodegradation could occur in GAC filters receiving prechlorinated
water, because disinfectants were reduced at the top of GAC. This trend holds true in
Figure 4-31, as the biomass concentration at the top of the Smin EBCT column where the
chlorine is being reduced is consistently lower than any point deeper (longer EBCT) in
the column where there is no longer a chlorine residual.

In filters treating substrate limited (low TOC, runs A-1, B-1, C-1, A-2) influent

waters, the biomass concentration at the top of the 10min EBCT column (average of

64,000 pg ATP/g) was consistently higher than at the top of the 20min EBCT column
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(average of 51,000 pg ATP/g), indicating that more of the biodegradable TOC uptake is
occurring in the first 10min of the column.

Examining runs A-1, B-1, C-1 and A-2 as a group shows no systematic effect of
influent bromide on biomass concentration in pilot scale columns. Runs B-2 and C-2 (2
and 3.5 mg/L TOC) show that increasing primary substrate as influent TOC produces a

significant increase in biomass concentration in pilot scale biofilters.

4.3.2 TOC Removal
Bio-GAC from the LVVWD was exhausted with respect to adsorption capacity,

as the media had been in full-scale use for several years prior to the pilot columns of this
research. Previous studies by Johnson et al., (2009), Kim and Kang (2008) and Tung et
al. (2006) demonstrate that steady state biodegradation can take from one to six months
to occur in filters containing fresh GAC. Since the influent water to the filter at LVVWD
held a residual of 1.5-2 mg/L Cl,, there was no acclimation phase needed for
biodegradation of micropollutants and TOC to begin as the microbial community was
already established in the GAC. Measuring influent and effluent TOC of the pilot system
verified this assumption. Average TOC removal (Table 4-14) for all six influent
conditions through a 20-minute EBCT is 16%, with full TOC removal results located in

Appendix E.
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Table 4-14: TOC Removal across 20 min EBCT for all six influent conditions

Pilot Column Target Condition Influent TOC E%IT;:tE_?SZ ZORr:r:\OI\E/I:ICT
ID - Run Number mg/L mg/L %
A-1 0 pg/L Br 1.28 1.10 14
B-1 50 pg/L Br 1.23 1.04 15
c-1 100 pg/L Br 1.22 1.07 12
A-2 1 mg/LTOC 1.40 1.04 26
B-2 2 mg/LTOC 2.23 1.93 13
C-2 3.5 mg/LTOC 3.64 2.99 18

4.3.3 Pseudo First Order Rate Equation

Biomass growth in drinking water biofilters is sustained by uptake of primary
substrate in the form of TOC. A compound at a concentration below the threshold
concentration (Smin) needed to support primary cellular processes is defined as a
secondary substrate. In this research, influent HAAs and THMs are present at
concentrations below (Syin) and therefore are targeted for removal via co-metabolism,
which occurs when nonspecific enzymes generated by the primary substrate metabolism
biodegrade secondary substrate (Zearley & Summers, 2012).

The Michaelis-Menten relationship has been used to express the reaction rate, r,

for trace contaminant utilization in biofilters (Zearley & Summers, 2012):

Equation 4.1: Michaelis-Menten Reaction Kinetics

dc X-C
r=———m= vmax
dty, K, +C

m

* (= Contaminant Concentration [HAA]
* X = Biomass Concentration [pg ATP / mL Bed]
*  Vmax= maximum reaction rate [ng (min-pg ATP)-1]
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* Km= Michaelis-Menten constant [ng L-1]
* tBF= contact time in the biofilter [min]

When the contaminant concentration is very low compared to the Michaelis constant

(C<Knm), Eqn. 4.1 can be simplified into a pseudo-first-order rate:

Equation 4.2: Pseudo First Order Rate Equation

r=-9C _pnx-c

ZBF
« k" = Contaminant Utilization Rate Constant [mL Bed (min*pg ATP)"]

If ter is approximated by the EBCT and Eqn. 4.2 is integrated by tsr from 0 to EBCT and

by C from Cirto Cefrresults in Eqn. 4.3.

Equation 4.3: Pseudo First Order Removal Model

C
— = exp(-k"- X - EBCT)

Inf

Integrating biomass concentration, X, over the EBCT gives the total biomass activity of

the column (Eqn. 4.4).

Equation 4.4: Total Biomass Activity
Activity,,,, = X - EBCT

* Activityro = Total Biomass Activity [(pg ATP*min)/mL Bed]

Inserting Eqn. 4.4 into Eqn. 4.3 allows expression of the fraction of contaminant
remaining in the effluent as a function of the contamination utilization rate constant and

the total biomass activity of the column.
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Equation 4.5: Pseudo First Order Removal Model using Activity

C
Lﬁc = exp(—k " ActivityTotal)
Inf

4.3.4 HAA Biodegradation

HAA influent data (Table 4-15) indicates that 85% of HAAs measured
were made up of either DCAA or TCAA. This section will focus on the biodegradation of
DCAA and TCAA. Full removal results for all HAAs are shown in Appendix G.

Table 4-15: Influent HAA Concentrations
Pilot Column MCAA MBAA DCAA  TCAA DBAA HAAS5 % DCAA+TCAA

ID - Run Number  pg/L ug/L ug/L ug/L ug/L  ug/L

A-1 0.5 0.1 20.9 17.1 0.8 394 97%
B-1 0.8 0.5 17.6 14.1 2.9 35.8 88%
C-1 0.4 0.6 15.9 14.3 4.2 35.6 85%
A-2 1.8 0.1 20.6 19.3 0.4 42.1 95%
B-2 2.5 0.8 22.5 18.8 2.8 47.4 87%
C-2 3.0 1.6 25.0 18.5 6.6 54.8 79%

DCAA biodegradation is shown in Figures 4-34 and 4-35 as a function of
EBCT and total biomass activity for the runs at 21°C. DCAA is known to be very
biodegradable and the results show high levels (>80%) removal consistently at a Smin
EBCT, despite a chlorinated influent (Kim & Kang 2008; Johnson et al. 2009; Zhou &
Xie, 2002; Baribeau et al., 2005). The first order model at 21°C is plotted alongside
experimental data in Figure 4-35; with increasing biomass concentration causing

increased DCAA biodegradation.
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Figure 4-34: DCAA Removal as a function of EBCT for all six influent conditions at
21°C
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Figure 4-35: DCAA Removal as a function of total biomass activity for all six influent
conditions at 10 and 21 °C

The DCAA removal was least for the 3.5 mg/L TOC feed, despite reporting the
highest biomass concentration and treating water with the highest influent TOC (3.7 mg
TOC /L), as shown in Figures 4-34 and 4-35. The results indicate that increased influent
primary substrate as TOC did not equate to more secondary substrate uptake. High levels
of DCAA removal observed after a Smin EBCT with marginal increases in removal
occurring with increasing EBCT/activity are what would be expected from a first order
rate of biodegradation (Zearley & Summers, 2012).

HAA data plotted as percent remaining vs. total biomass activity and fitted with

an exponential trend line produces a first order rate equation from which the
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contamination utilization rate constant (k') can be extrapolated for the given
environmental conditions of the experiment (Table 4-16). Figure 4-35 and 4-37 show the
experimental fit to the first order model. Data from all the pilot runs contributed to
produce the fit, as first order kinetics dictate that percent removal is only a function of
biomass concentration with no relationship to influent concentration of the contaminant
(Zearley & Summers, 2012).

Table 4-16: Extrapolated Contaminant Utilization Rate Constants

pH Temperature k' DCAA k' TCAA
°C mL*(pg ATP*min)™
8.0 21 -2.00E-05  -7.00E-06

TCAA biodegradation as a function of EBCT and total biomass activity is
shown in Figures 4-36 and 4-37. TCAA is known to be less biodegradable than DCAA
and this finding is confirmed in our results (Xie & Zhou, 2002; Baribeau et al., 2005;
Kim & Kang, 2008; Johnson et al., 2009). The first order model is plotted alongside
experimental data in Figure 4-37 with increasing biomass concentration causing

increased TCAA biodegradation.

www.manaraa.com



84

100 [ !
90 I
80 I A
_ 70 I &
% 01 = WO pg/L Br
2 50 A —
g L B 50 pg/L Br
g 40 7 [1100 pug/L Br
30 T A1 mg/LTOC O
20 I A2 mg/LTOC ]
10 A35mg/LTOC  —]
0 . T T A
0 5 10 15 20

Empy Bed Contact Time (min)
Figure 4-36: TCAA Removal as a function of EBCT for all six influent conditions
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Figure 4-37: TCAA Removal as a function of total biomass activity for all six influent

conditions at 10 and 21 °C

TCAA removal appears to conform to first order rate kinetics, with >50%

removal occurring after Smin EBCT, >80% removal after 10min and > 90% removal

after 20min EBCT. No effect of influent bromide or TOC is observed. The first order

model is only fit to the data at 21°C. Significantly slower biodegradation occurring at

10°C on an EBCT basis still appears to fit the model at 21°C due to a corresponding

decrease in biomass activity at lower temperatures. Removal data at 15 °C is not included

in Figures 4-35 and 4-37 because there is no corresponding biomass measurement for the
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time when the biofilter was being operated at 15 °C. The effect of temperature is

expanded upon in section 4.3.5.

4.3.5 Effect of Temperature of HAA Biodegradation

Changes in temperature can significantly impact HAA biodegradation. Kim and
Kang (2008) reported an average of 99% removal of HAAS in a GAC filter adsorber
during the warm season (April 2004—October 2004) and only 34% removal of HAAS
during the cold season (January 2005-March 2005). Significant effects of temperature on
HAA biodegradation have also been reported Wu and Xie (2005). To investigate the
effect of temperature on HAA biodegradation in our columns, a jacketed column and a
recirculating chiller controlled the temperature of column A during the second pilot run
A-2. The second pilot run lasted about 3 weeks, with no temperature control during the
first week, temperature control at 15° C during the second week and 10° C during the

third week.
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Figure 4-38: Temperature Effects on DCAA Removal
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Figure 4-39: Temperature Effects on TCAA Removal
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Removal of DCAA was not significantly impacted by the decrease in temperature.
TCAA removal virtually ceased at Smin EBCT when the temperature was lowered from
21° C to 10° C. When allowed a 20min EBCT, TCAA removal still reaches about 90%
even at 10° C. The 10 C data for TCAA is shown on Figure 4-35 along with the 21 C data

and the corresponding model fit.

4.3.6 THM Biodegradation and Reformation

THM removal via biodegradation has been reported to be minimal to nonexistent
(Kim & Kang 2008, Tung et al. 2006). Our results for THM biodegradation are
nonsystematic and are reported in Appendix F.

Rechlorinated influent simulated distribution system (SDS) samples demonstrated
additional formation of THMs as would be expected. Waters with higher formation
potential (high toc, high bromide) generally showed increased formation in the influent
SDS sample relative to the instantaneous influent sample. Effluent SDS reformation
showed the same trends as the influent SDS samples. THM reformation data is located in

Appendix F.

4.3.7 HAA Reformation and Treatment Effectiveness

SDS analysis performed on influent and 20min EBCT effluent samples for each
pilot run scenario is shown below in Figures 4-4 through 4-45. The influent and influent
SDS samples are representative of what a consumer would be exposed to if no treatment
strategy were applied. The 20min EBCT effluent and 20min EBCT SDS datum are
representative of what a consumer would be exposed to immediately after biofiltration

and at the end of the distribution system after rechlorination. All six influent scenarios
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produced similar results when rechlorinated, with DCAA and TCAA still comprising the
majority of HAAS.

HAAS reduction and reformation results for all six scenarios are presented in
Figure 4-46. Higher reformation occurs in higher TOC influent waters, and increased
formation of DBAA is observed in waters with elevated influent TOC and bromide.
Biofiltration is an effective treatment for the reduction in HAAS both immediately after
biofiltration as well as at the end of the distribution system, across many ranges of

chlorinated influent bromide and TOC conditions.
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Figure 4-40: HAA Reformation - 0 microgram/L Br Influent
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4.4 Summary of Results

Bench scale RSSCTs and pilot scale biofilter columns were operated to evaluate
adsorptive and biological mode DBP removal in activated carbon filters. Key findings are

summarized below.

4.4.1 Adsorption

A total of six RSSCTs were carried out in order to investigate the effects of GAC
type, source water quality and EBCT on the adsorption of TOC and DBPs in treated
drinking water. Bituminous, lignite and coconut carbon packed RSSCTs were operated in
parallel, with results indicating bituminous carbon as the best performing carbon for
simultaneous TOC and DBP removal. Experimental TOC breakthrough results for the
bituminous GAC are similar to the Zachman and Summers (2010) model, which predicts
50% breakthrough at about 16,000 BV. Breakthrough of the TTHM species occurred in
order of adsorbability (TCM - DCBM - DBCM - TBM) in all RSSCTs.
Experimental HAA adsorption results were nonsystematic.

Bituminous carbon was tested further to evaluate the impact of different influent
conditions in response to additional chlorination (Img/L Cl,) and a higher level of
bromide (100 pg /L) on TOC and DBP adsorption. The results suggest that EBCT affects
TOC removal; with the 20 min EBCT consistently showing enhanced TOC removal
relative to the 5 and 10 min EBCTs. The effect of chlorine did not seem to be significant
as the BTCl, and BT waters TOC breakthrough behaved similarly, however, bromide
addition appeared to have a positive impact on TOC removal, especially early in the filter

run.
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Experimental results show that adsorption with bituminous GAC is an effective
treatment strategy for the removal of TOC and TTHMs through at least 6,000 bed
volumes (42 days at 10min EBCT) and often longer depending on influent conditions.

The influent TTHMs in the Boulder tap (BT) water were 98% TCM, while the
addition of chlorine yielded more THMs and shifted the speciation to about 80% TCM
and 20% DCBM. The addition of bromide to the BT water increased the TTHMs by 14%
and shifted the speciation to about 65% TCM, 14% DCBM, 15% DBCM and 6% TBM.
The influent THM concentrations of all three influents decreased over the month long
experiment run time, so the data were normalized with the linear regression of the
influent values to allow comparison of BVsy and BV values between our experimental
runs and with literature.

RSSCT results were compared against results produced by the PSDM.
Experimental breakthrough trends well with PSDM model breakthrough showing a
positive relationship between model output and experimental data. Breakthrough for all
RSSCTs exhibit chromatographic effects as normalized concentrations reach values
greater than one. Chromatographic effects also appear in all co-solute model runs,
suggesting that competitive adsorption and/or desorption due to concentration gradient
reversal may be the cause. No significant effect of influent TOC on THM removal is
observed between runs performed at 1.3 and 2.2 mg/L TOC. The observed effects of
EBCT on TCM and DCBM breakthrough are consistent with modeled results, showing
that GAC adsorption capacity on per bed volume basis does not increase with increasing
EBCT. All experimental and model scenarios demonstrate that THM adsorbability is the

most important factor in determining breakthrough order, with influent concentration
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determining localized breakthrough. Modeled and experimental results indicate a
significant effect of influent concentration on breakthrough of TTHMs in the
microgram/L range. Elevated influent TTHMSs produced faster breakthrough of TTHMs.
Modeled single-solute and NOM-solute conditions tend to bound experimental
breakthrough for the three RSSCTs modeled with the PSDM. The NOM-solute model
consistently reached breakthrough first, followed by the co-solute and single-solute
model. The same trend is present for each of the THMs modeled, indicating that the
presence of both NOM and co-solutes are important to consider when analyzing THM
breakthrough. For the NOM-solute and more drastically co-solute models, the difference
from the single-solute model increases with increasing adsorbability. Thus, the observed
co-solute effect is greater for strongly adsorbed compounds than for weakly adsorbed
compounds. Model results show that co-solute effects must also be considered when the
compound of interest is present in orders of magnitude less than other competing

compounds.

4.4.2 Biodegradation

Three experimental pilot scale biofiltration setups were operated under a total of
six different influent conditions. Columns were packed with exhausted bio-GAC that was
acclimated to influent chlorine residual. An average TOC removal of 16% occurred
across all six influent scenarios. THM biodegradation results were nonsystematic. DCAA
and TCAA made up >85% of HAAS and therefore DCAA and TCAA biodegradation
were investigated further. Biodegradation of HAAs in pilot scale columns followed
expected trends from the first order model shown to apply to biodegradation of

micropollutants by Zearley and Summers (2012). Experimental DCAA removal between
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83%-97% was reported at all EBCTS (5, 10 and 20min) for the duration of the pilot run.
TCAA removal ranged between 50%-78% at 5 minute EBCT, 80%-96% at 10 minute
EBCT and 93%-98% at 20 minute EBCT. No observed effect of influent TOC or
bromide on removal of HAAs reported. Higher temperature produced faster
biodegradation of TCAA and lower temperature significantly slowed biodegradation of
TCAA, although 90% removal was still achieved at a 20min EBCT.

HAA reduction and reformation data for all six scenarios indicated that
biofiltration is an effective treatment for the reduction in HAAS both immediately after
biofiltration as well as at the end of the distribution system, across many ranges of

chlorinated influent bromide and TOC conditions.
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Chapter 5
Summary and Recommendations

The goal of this project was to develop and evaluate the use of GAC in the
distribution system to meet DBPs (especially HA As) regulations under both adsorptive
and biological modes. It was hypothesized that a post-treatment reactor strategically
located in the distribution system will offer small systems a cost-effective alternative to
controlling THMs, HAAS5s and other unregulated DBPs. To verify our hypothesis, a total
of six adsorptive bench scale RSSCTs and three pilot scale biofilters were operated in
order to investigate the effects of GAC type, source water quality and EBCT on the
adsorption and biodegradation of TOC and DBPs in treated drinking water.

Bituminous, lignite and coconut carbon packed RSSCTs were operated in parallel,
with results indicating bituminous carbon as the best performing carbon for simultaneous
TOC and DBP removal. Experimental TOC breakthrough results for the bituminous GAC
are similar to the Zachman and Summers (2010) model, which predicts 50%
breakthrough at about 16,000 BV. Breakthrough of the TTHM species occurred in order
of adsorbability (TCM - DCBM - DBCM - TBM) in all RSSCTs. Experimental
HAA adsorption results were nonsystematic.

Bituminous carbon was tested further to evaluate the impact of different influent
conditions in response to additional chlorination (1mg/L Cl,) and a higher level of
bromide (100 pg /L) on TOC and DBP adsorption. The results suggest that EBCT affects
TOC removal; with the 20 minute EBCT consistently showing enhanced TOC removal
relative to the 5 and 10 minute EBCTs. The effect of chlorine did not seem to be

significant as the BTCI, and BT waters TOC breakthrough behaved similarly, however,
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bromide addition appeared to have a positive impact on TOC removal, especially early in
the filter run.

Experimental results show that adsorption with bituminous GAC is an effective
treatment strategy for the removal of TOC and TTHMs through at least 6,000 bed
volumes (42 days at 10min EBCT) and often longer depending on influent conditions.

RSSCT results were compared against results produced by the PSDM.
Experimental breakthrough trends well with PSDM model breakthrough showing a
positive relationship between model output and experimental data. Breakthrough for all
RSSCTs exhibit chromatographic effects as normalized concentrations reach values
greater than one. Chromatographic effects also appear in all co-solute model runs,
suggesting that competitive adsorption and/or desorption due to concentration gradient
reversal may be the cause. No significant effect of influent TOC on THM removal is
observed between runs performed at 1.3 and 2.2 mg/L TOC. The observed effects of
EBCT on TCM and DCBM breakthrough are consistent with modeled results, showing
that GAC adsorption capacity on per bed volume basis does not increase with increasing
EBCT. All experimental and model scenarios demonstrate that THM adsorbability is the
most important factor in determining breakthrough order, with influent concentration
determining localized breakthrough. Modeled and experimental results indicate a
significant effect of influent concentration on breakthrough of TTHMs in the
microgram/L range. Elevated influent TTHMSs produced faster breakthrough of TTHMs.

Modeled single-solute and NOM-solute conditions tend to bound experimental
breakthrough for the three RSSCTs modeled with the PSDM. The NOM-solute model

consistently reached breakthrough first, followed by the co-solute and single-solute
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model. The same trend is present for each of the THMs modeled, indicating that the
presence of both NOM and co-solutes are important to consider when analyzing THM
breakthrough. For the NOM-solute and more drastically co-solute models, the difference
from the single-solute model increases with increasing adsorbability. Thus, the observed
co-solute effect is greater for strongly adsorbed compounds than for weakly adsorbed
compounds. Model results show that co-solute effects must also be considered when the
compound of interest is present in orders of magnitude less than other competing
compounds.

Operational recommendations for adsorptive THM removal include lead-lag
operation with TOC monitoring, split stream treatment, and determination of influent
THM speciation. GAC should be installed in a lead-lag configuration (two GAC
contactors in series) for adsorptive removal of THMs. Monitoring TOC breakthrough as a
surrogate for THM breakthrough at a sample point located after the primary contactor
and prior to the secondary contactor is a cost effective way to determine when the
primary contactor GAC needs replacement, while maintaining treatment redundancy in
the secondary contactor. In such an arrangement, high levels (>90%) of THM removal
would be expected, with chromatographic peaking abated by the redundancy in
treatment. Such high levels of treatment are usually excessive to meet the stage 2 DBPR
MCLs. In order to extend GAC life while meeting regulatory limits, each water system
should determine an appropriate design flow to split off from the main distribution
system to treat in the GAC contactor system. The amount of flow treated should account
for variability in distribution flow, with regulatory limits being met at high flows and

enhanced treatment provided during lower flows. Analysis of site-specific influent THM
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speciation should also be conducted at all potential implementation sites. Experimental
and modeled results indicate that brominated THM species are removed far more
effectively than chloroform via GAC adsorption. In treated water with high levels of
chloroform, air stripping might be a better choice due to the high volatility of lower
molecular weight THMs.

Three experimental pilot scale biofiltration setups were operated under a total of
six different influent conditions. Columns were packed with exhausted bio-GAC that was
acclimated to influent chlorine residual. An average TOC removal of 16% occurred
across all six influent scenarios. THM biodegradation results were nonsystematic. DCAA
and TCAA made up >85% of HAAS and therefore DCAA and TCAA biodegradation
were investigated further. Biodegradation of HAAs in pilot scale columns followed
expected trends from the first order model shown to apply to biodegradation of
micropollutants by Zearley and Summers (2012). Experimental DCAA removal between
83%-97% was reported at all EBCTS (5, 10 and 20min) for the duration of the pilot run.
TCAA removal ranged between 50%-78% at 5 minute EBCT, 80%-96% at 10 minute
EBCT and 93%-98% at 20 minute EBCT. No observed effect of influent TOC or
bromide on removal of HAAs reported. Higher temperature produced faster
biodegradation of TCAA and lower temperature significantly slowed biodegradation of
TCAA, although 90% removal was still achieved at a 20min EBCT.

HAA reduction and reformation data for all six scenarios indicated that
biofiltration is an effective treatment for the reduction in HAAS both immediately after
biofiltration as well as at the end of the distribution system, across many ranges of

chlorinated influent bromide and TOC conditions.
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Future research on adsorptive and biological mode DBP removal in activated
carbon filters should include pilot scale operation and monitoring at critical points in a
distribution system that is currently out of compliance. The choice of operation in
adsorptive mode versus biodegradation mode should be dependent on system specific
compliance needs. Cost analysis with consideration of carbon density is recommended
for systems considering GAC for THM removal. Referring Table 3-1, lignite coal (0.39
g/cm’) is significantly less dense than both bituminous coal (0.54 g/cm’) and coconut
shell (0.50 g/cm®) GACs. The results of adsorptive RSSCT #1 show similar performance
to the bituminous GAC for TOC and THM removal on an EBCT basis, indicating that
lignite GAC could potentially provide similar treatment at a cost lower than of
bituminous GAC, as GAC is sold by weight. Additionally, a biomass acclimation study in
GAC filters under chlorinated conditions would be a significant contribution to the
literature. Important variables in this proposed study include influent temperature, TOC
and chlorine concentration. The research presented in this thesis indicates that a post-
treatment reactor strategically located in the distribution system will offer small systems a

cost-effective alternative to controlling THMs, HAASs and other unregulated DBPs.
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Data Sheet

Pure Water. Clean Air, Better World.  Calgon

rbon*

FILTRASORB® 400

Granular Activated Carbon

Applications
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FILTRASORB 400 activated carbon can be used in a variety of
liquid phase applications for the removal of dissolved organic
compounds. FILTRASORB 400 has been successfully applied for
over 40 years in applications such as drinking and process water
purification, wastewater treatment, and food, pharmaceutical, and
industrial purification.

Description

FILTRASORB 400 is a granular activated carbon for the removal of
dissolved organic compounds from water and wastewater as well
as industrial and food processing streams. These contaminants
include taste and odor compounds, organic color, total organic
carbon (TOC), and industrial organic compounds such as TCE

and PCE.

This activated carbon is made from select grades of bituminous
coal through a process known as reagglomeration to produce a
high activity, durable, granular product capable of withstanding
the abrasion associated with repeated backwashing, hydraulic
transport, and reactivation for reuse. Activation is carefully
controlled to produce a significant volume of both low and high
energy pores for effective adsorption of a broad range of high and
low molecular weight organic contaminants.

FILTRASORB 400 is formulated to comply with all the applicable
provisions of the AWWA Standard for Granular Activated Carbon
(B604) and Food Chemicals Codex. This product may also be
certified to the requirements of ANSI/NSF Standard 61 for use

in municipal water treatment facilities. Only products bearing the
NSF Mark are certified to the NSF/ANSI 61 - Drinking Water System
Components - Health Effects standard. Certified Products will

bear the NSF Mark on packaging or documentation shipped with
the product.

Features / Benefits

* Produced from a pulverized blend of high quality bituminous coals
resulting in a consistent, high quality product.

Carbon granules are uniformly activated through the whole

granule, not just the outside, resulting in excellent adsorption
properties and constant adsorption kinetics.

The reagglomerated structure ensures proper wetting while also
eliminating floating material.
High mechanical strength relative to other raw materials,

thereby reducing the generation of fines during backwashing and

hydraulic transport.

Carbon bed segregation is retained after repeated backwashing,

ensuring the adsorption profile remains unchanged and therefore

maximizing the bed life.

Reagglomerated with a high abrasion resistance, which provides
excellent reactivation performance.
High density carbon resulting in a greater adsorption capacity per

unit volume.
Specifications’ FILTRASORB 400
lodine Number, mg/g 1000 (min)
Moisture by Weight 2% (max)
Effective Size 0.55-0.75 mm
Uniformity Coefficient 1.9 (max)
Abrasion Number 75 (min)
Screen Size by Weight, US Sieve Series
On 12 mesh 5% (max)
Through 40 mesh 4% (max)
*Calgon Carbon test method
Typical Properties* FILTRASORB 400
Apparent Density (tamped) 0.54 g/cc
Water Extractables <1%
Non-Wettable <1%

*For general information only, not to be used as purchase specifications.

Safety Message

Wet activated carbon can deplete axygen from air in enclosed spaces. If use in an endlosed

space is required, procedures for work in an axygen deficient environment should be followed.

1.800.4CARBON calgoncarbon.com
© Copyright 2015 Calgon Carbon Corporation, All Rights Reserved

DS-FILTRA40015-EIN-E1
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Typical Pressure Drop Typical Bed Expansion During Backwash
Based on a backwashed and segregated bed Based on a backwashed and segregated bed
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Design Considerations

FILTRASORB 400 activated carbon is typically applied in down-flow
packed-bed operations using either pressure or gravity systems.
Design considerations for a treatment system is based on the user’s
operating conditions, the treatment objectives desired, and the
chemical nature of the compound(s) being adsorbed.

Safety Message 1.800.4CARBON  calgoncarbon.com
Wet activated carbon can deplete oxygen from air in enclosed spaces. If use in an enclosed © Copyright 2015 Calgon Carbon Corporation, All Rights Reserved
space is required, procedures for work in an oxygen deficient environment should be followed. DS-FILTRA40015-EIN-E1
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CABOT 2

NORIT ACTIVATED CARBON

WHY CABOT

Cabot Norit Activated Carbon is a
premier activated carbon manufacturer
respected for experienced people,
diverse products and strong customer
relationships. Cabot's history of
innovation, product performance,
technical expertise and customer focus
ensure that you receive the right
products and solutions for your specific
purification needs.

V)

FM 36335

HYDRODARCO® 4000

Granular Activated Carbon

HYDRODARCO 4000 is an acid washed carbon designed for water treatment
applications. It is produced by high temperature steam activation of lignite coal.
HYDRODARCO 4000 has a wide pore size distribution and large pore volume. These
characteristics provide HYDRODARCO 4000 with rapid adsorption rate and high
capacity for dissolved organics.

HYDRODARCO 4000 is Kosher certified, meets NSF/ANSI Standard 61 and the
requirements of the latest version of the U.S. Food Chemicals Codex.

Potable Water

HYDRODARCO 4000 adsorbs taste, odor, color and toxic organic compounds from
drinking water. It has the highest capacity of any commercial water carbon for tannic
and humic compounds, which are precursors for trihalomethane (THM) formation.
HYDRODARCO 4000 effectively removes pesticides, herbicides, synthetic organic
chemicals, and other suspected carcinogens found in drinking water supplies.
HYDRODARCO 4000 meets all AWWA B604 standards for activated carbon for rapid
gravity filters and pressure contactors used in potable water purification systems.

Wastewater and Contaminated Groundwater

Whether applied at point source or in a polishing filter, HYDRODARCO 4000 can be
used to meet discharge limits for most regulated organics. The broad pore size
distribution of HYDRODARCO 4000 allows treatment of complex wastewater streams
containing both large and small molecular size pollutants. The macroporous structure
of HYDRODARCO 4000 provides high tolerance for natural organic matter (NOM), which
interferes with adsorption of other organic contaminants.

SPECIFICATIONS

lodine number min. 500 -
Molasses decolorizing efficiency (RE) min. 90 -
Abrasion resistance (AWWA) min. 70 %/mm
Particle size ) 10 mesh (2.00 mm) max. 5 %
Particle size (30 mesh (0.60 mm) max. 5 %
Effective size min. 0.6 mm

max. 0.8 mm
Uniformity coefficient max. 2.1 -
Moisture (as packed) max. 8 %
Dust max. 0.30 %

CABOT 2

NORIT ACTIVATED CARBON
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HYDRODARCO® 4000

GENERAL CHARACTERISTICS
Tannin value 140 mg/l
Apparent density, vibrating feed 039 g/mi
245 bt
Density, backwashed and drained 2 Ib/fts
PH, water extract 45 -
NOTES

110

1. Specifications are guaranteed values based on lot to lot quality control, as covered by Cabot's IS0 9001 certification.
2. General characteristics reflect average values of product quality, not to be used as purchase specification.
3. For health and safety related aspects please refer to the Safety Datasheet (SDS), which is available on request.

PACKAGING

HYDRODARCO® 4000 is available in:

- 40 |b bag; 30 bags per pallet for a net pallet weight of 1200 Ib

- Woven polypropylene bulk bag, 1102 Ib net
- Bulk trailer

Product availabilities depend on the type of packaging.

, NORTH AMERICA SOUTH AMERICA EUROPE ASIA PACIFIC
CABOT Canot Corporation Business Cabot Latin American Onision  Cabot Norkt av. Cabot Rag 4
. an Tochnizal Certer fue do Paraiso, 148 - 5% ancer .0, Bax 106 558 Suangtai foed

IEENTAGTTINE EAw 167 Concond Aoad 04103-000, Sa0 Packa, 57 3600 AC Amersfoort Shanghas 201108, CHINA
cabotcorp.com Blkrica, MADIEZITO0I USA BRADL Tre Netrerards TEL +5 21617 8800

: TR 8004622313 TEL 55112144 8400 TEL+31 3346 4861 FAX 65 216434 532

FAX +1 978670 7035 FAX +5511 0630061 FAX +3133 4517 428

Thigie i acor and for y.No g warranty 8 to this information, o sty product to which it relates, is given o implied.
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WESTATES® COCONUT SHELL BASED GRANULAR ACTIVATED
CARBON - AQUACARB" 830C, 1230C AND 1240C CARBONS

FOR USE IN POTABLE WATER AND PROCESS WATER APPLICATIONS

AquaCarb® 830C, 1230C and 1240C carbons are high activity
coconut shell based granular activated carbons. These hard,
attrition resistant high surface area carbons are designed to
remove difficult to adsorb organics from potable, waste and
process water. They are especially effective for adsorbing
chlorine, disinfection by-products, TCE, PCE, MTBE and other
trace level organics.

Applications

Cost effective AquaCarb activated carbons developed

by Evoqua have been demonstrated to provide superior
performance in an extensive array of liquid phase treatment
applications. AquaCarb activated carbons are available for:

*  Removal of trace organic contaminants
*  Pesticide removal

*  MTBE removal

*  Disinfection by-product (DBP) removal
*  Drinking water treatment

* Industrial process water treatment

*  Home water filtration systems

Quality Control

AquaCarb activated carbons are extensively quality checked
at our State of California certified environmental and carbon
testing laboratory located in Los Angeles, CA. Evoqua'’s
laboratory is fully equipped to provide complete quality control
analyses using ASTM standard test methods in order to assure
the consistent quality of all Westates® carbons.

Our technical staff offers hands-on guidance in selecting the
most appropriate system, operating conditions and carbon to
meet your needs. For more information, contact your nearest
Evoqua representative.

Features and Benefits

* ANSI/NSF Standard 61 classified for use in potable
water applications

* Fully conforms to physical, performance and
leachability requirements established by the
current ANSI/AWWA B604 (which includes the
Food Chemical Codex requirements)

* Adetailed quality assurance program guarantees
consistent quality from lot to lot and shipment to
shipment

www.manharaa.com



TYPICAL PROPERTIES
S ik
caten e - e
Mesh Size, U.S. Sieve 8x30 12x30 12x 40
Effective Size, mm 08-11 06-085 055-075
Uniformity Coefficient 21 20 19
lodine No., mg | /g 100 100 100
Hardness No., Wt. % 95 95 95
Abrasion No., Wt. % 8s 8s 8s
Apparent Density, g/cc 046-052 046-052 0.46-052
‘Water Soluble Ash, Wt. % 2 2 2

112

Safety Note: Under certaln conditions, some compounds may
oxldize, decompose or polymerize In the presence of activated
carbon causing a carbon bed temperature rise that Is sufficlent
to cause Ignition. Particular care must be exercised when
compounds that have a peroxide-forming tendency are being
adsorbed. In addition the adsorption of VOCs will lead to the
generatlon of heat within a carbon bed. These heats of reaction
and adsorption need to be properly dissipated In order to fully
assure the safe operation of the bed.

Wet actlvated carbon readily adsorbs atmospheric oxygen.
Dangerously low oxygen levels may exist In closed vessels

or poorly ventllated storage areas. Workers should follow all
applicable state and federal safety guldelines for entering
oxygen depleted areas.

Downflow Pressure Drop Through
A Backwashed and Stratified Bed
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WESTATES® COAL BASED GRANULAR ACTIVATED CARBON -
AQUACARB" 816 AND 820 CARBONS

FOR POTABLE, MUNICIPAL, AND INDUSTRIAL WATER TREATMENT

Description & Applications

AquaCarb® 816 and AquaCarb® 820 carbons are high activity
granular activated carbons manufactured from selected
grades of bituminous coal. These carbons are utilized in
upgrading existing anthracite coal and sand filtration plants.
These carbons have been demonstrated to be an excellent
media for the adsorption of dissolved organics, taste and

odor compounds. Additional applications include biological
activated carbon (BAC) water treatment. This carbon media
has demonstrated an ability to enhance biodegradation of
organics.

Applications

Cost effective AquaCarb activated carbons developed

by Evoqua have been demonstrated to provide superior
performance in an extensive array of liquid phase treatment
applications. AquaCarb activated carbons are available for:

. Dechlorination/chloramine reduction

*  Removal of organic contaminants

*  Taste and odor reduction

. Disinfection by-product (DBP) removal

*  Drinking water treatment

*  Biological activated carbon (BAC) support

Quality Control

AquaCarb activated carbons are extensively quality checked
at our State of California certified environmental and carbon
testing laboratory located in Los Angeles, CA. Evoqua's
laboratory is fully equipped to provide complete quality control
analyses using ASTM standard test methods in order to assure
the consistent quality of all Westates® carbons.

Our technical staff offers hands-on guidance in selecting the
most appropriate system, operating conditions and carbon to
meet your needs. For more information, contact your nearest
Evoqua representative.

Features and Benefits

* ANSI/NSF Standard 61 classified for use in potable
water applications

* Fully conforms to physical, performance and
leachability requirements established by
ANSI/AWWA B604 (which includes the Food
Chemical Codex requirements)

* A detailed quality assurance program guarantees
consistent quality from lot to lot and shipment to
shipment
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TYPICAL PROPERTI Safety Note: Under certaln conditions, some compounds may
L oxldize, decompose or polymerize In the presence of activated
Parameter AquaCarb® 816 AquaCarb 820 carbon causing a carbon bed temperature rise that Is sufficlent
Carbon Type Bit Coal BI Coal to cause Ignition. Particular care must be exercised when
compounds that have a peroxide-forming tendency are being
e S S HXlE Exa adsorbed. In addition the adsorption of VOCs will lead to the
Effective Size, mm 13-15 10-12 generation of heat within a carbon bed. These heats of reaction
and adsorption need to be properly dissipated In order to fully
kot Coofioiet 4 2 assure the safe operation of the bed.
lodine No., mg /g 900 900 Wet activated carbon readily adsorbs atmospheric oxygen.
Abrasion No., Wt. 9% 80 80 Dangerously low oxygen levels may exist In closed vessels
Aoparent D 046054 046054 or poorly ventllated storage areas. Workers should follow all
pparent Density, g/tc o - applicable state and federal safety guldelines for entering
oxygen depleted areas.
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Appendix B — TOC Adsorption
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Appendix E - TOC Biodegradation
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1/6/16 1/11/16 1/18/16
Run Number Target Condition Sample ID TOC mg/L TOC mg/L TOC mg/L
Influent 1.22 1.23 1.39
A-1 0 pg/L Br 5 mirj EBCT 1.20 1.09 1.11
10 min EBCT 1.18 1.13 1.04
20 min EBCT 1.11 1.03 1.16
Influent 1.23 1.23 1.23
B-1 50 pg/L Br 5 mirj EBCT 1.05 1.05 1.10
10 min EBCT 1.15 1.03 1.13
20 min EBCT 1.04 1.10 0.97
Influent 1.16 1.22 1.29
5 min EBCT 1.13 1.14 1.19
cl 100 ue/LBr ) inEBCT 1.03 1.02 1.10
20 min EBCT 1.06 1.06 1.10
1/28/16 2/3/16 2/6/16
Run Number Target Condition Sample ID TOC mg/L TOC mg/L TOC mg/L
Influent 1.30 1.30 1.59
A-2 1 mg/LTOC 5 mir! EBCT - 1.29 1.32
10 min EBCT - 0.96 1.25
20 min EBCT - 0.84 1.23
Influent 2.36 2.00 2.33
5 min EBCT - 1.80 2.06
B-2 2mg/LTOC 5 min EBCT - 1.67 1.96
20 min EBCT - 1.81 2.04
Influent 3.81 3.63 3.48
2 3.5 mg/L TOC 5 mir! EBCT - 3.32 3.32
10 min EBCT - 3.14 3.16
20 min EBCT - 2.92 3.05
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Appendix F — THM Biodegradation and Reformation
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Appendix G — HAA Biodegradation and Reformation
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Appendix H — ATP Biomass Measurements and Method
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